# MUZAFFARPUR INSTITUTE OF TECHNOLOGY, MUZAFFARPUR



**COURSE FILE** 

OF

# **DIGITAL ELECTRONICS**

# (04 1302)



**Faculty Name:** 

# Mr. UMAR FAROOQUE

## **ASSISTANT PROFESSOR,**

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

|       | Content                                   |          |
|-------|-------------------------------------------|----------|
| S.No. | Торіс                                     | Page No. |
| 1     | Vision of department                      |          |
| 2     | Mission of department                     |          |
| 3     | PEO's                                     |          |
| 4     | PO's                                      |          |
| 5     | Course objectives and course outcomes(Co) |          |
| 6     | Mapping of CO's with PO's                 |          |
| 7     | Course syllabus and GATE syllabus         |          |
| 8     | Time table                                |          |
| 9     | Student list                              |          |
| 10    | Lecture plans                             |          |
| 11    | Assignments                               |          |
| 12    | Tutorial sheets                           |          |
| 13    | Seasonal question paper                   |          |
| 14    | University question paper                 |          |
| 15    | Question bank                             |          |
| 16    | Course materials                          |          |
| 17    | Result                                    |          |
| 18    | Result analysis                           |          |
| 19    | Quality measurement sheets                |          |
|       |                                           |          |

#### VISION OF DEPARTMENT

The department is committed for high quality teaching and pursuit of excellence in research. The faculty members of the department are actively involved in research and development in challenging areas of both theory and experiment. We pledge to serve the nation and society by providing skilled and well developed human resource through brilliance in technical education and research.

#### MISSION OF DEPARTMENT

After successful completion of program, graduates will be able to

**PEO1:** Work in the infrastructure development projects.

**PEO2:** Pursue higher studies.

PEO3: Contribute in teaching, research and other developmental activities of

electronics & communication engineering and its allied fields.

**PEO4:** Work in the multicultural and multidisciplinary groups for the sustainable development and growth of electronics and communication engineering projects and profession.

#### **PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):**

After successful completion of program, graduates will be able to

**PEO1:** Work in the infrastructure development projects.

**PEO2:** Pursue higher studies.

- **PEO3:** Contribute in teaching, research and other developmental activities of electronics & communication engineering and its allied fields.
- **PEO4:** Work in the multicultural and multidisciplinary groups for the sustainable development and growth of electronics and communication engineering projects and profession.

#### PROGRAMME OUTCOMES (PO)



| PO2  | <b>Problem analysis:</b> Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                                 |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO3  | <b>Design/development of solutions:</b> Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.         |
| PO4  | <b>Conduct investigations of complex problems:</b> Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                                |
| PO5  | <b>Modern tool usage:</b> Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.                                                                |
| PO6  | <b>The engineer and society:</b> Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                               |
| PO7  | <b>Environment and sustainability:</b> Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of and need for sustainable development.                                                                                    |
| PO8  | <b>Ethics</b> : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                   |
| PO9  | <b>Individual and teamwork:</b> Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                    |
| PO10 | <b>Communication:</b> Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |
| PO11 | <b>Project management and finance:</b> Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.                                               |
| PO12 | <b>Life-long learning:</b> Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.                                                                                                                 |

#### **COURSE OBJECTIVE AND COURSE OUTCOMES:**

| Institute / College Name :     | MUZAFFARPUR INSTITUTE OF TECHNOLOGY |                |   |
|--------------------------------|-------------------------------------|----------------|---|
| Program Name                   | B. Tech. Information Technology     |                |   |
| COURSE CODE                    | 04 1302                             |                |   |
| COURSE NAME                    | DIGITAL ELECTRONICS                 |                |   |
| Lecture / Tutorial / Practical | 3-1-2                               | Course Credits | 5 |
| (per week):                    |                                     |                |   |
| Course Coordinator Name        | Mr. UMAR FAROOQUE                   |                |   |

#### **Course objective:**

The objective of this course is to provide the fundamental concepts associated with the digital logic and circuit design. To introduce the basic concepts and laws involved in the Boolean algebra and logic families and digital circuits. To familiarize with the different number systems, logic gates, and combinational and sequential circuits utilized in the different digital circuits and systems. The course will help in design and analysis of the digital circuit and system.

#### **Course outcomes (CO):**

**CO1**: Became familiar with the digital signal, positive and negative logic, Boolean algebra, logic gates, logical variables, the truth table, number systems, codes, and their conversion from to others.

**CO2**: Learn the minimization techniques to simply the hardware requirements of digital circuits, implement it, design and apply for real time digital systems.

**CO3**: Understand the working mechanism and design guidelines of different combinational, sequential circuits and their role in the digital system design.

**CO4**: Became able to know various types of components-ADC and DAC, memory elements and the timing circuits to generate different waveforms, and also the different logic families involved in the digital system.

| CO/PO   | PO1                                                                         | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8   | PO9 | PO10 | PO11 | PO12 |
|---------|-----------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-------|-----|------|------|------|
|         |                                                                             |     |     |     |     |     |     |       |     |      |      |      |
| CO1     | 3                                                                           | 1   |     |     |     | 1   | 3   | 2     |     | 3    |      | 2    |
|         |                                                                             |     |     |     |     |     |     |       |     |      |      |      |
| CO2     | 3                                                                           | 3   |     | 2   |     | 3   | 2   |       |     | 3    | 2    | 2    |
|         |                                                                             |     |     |     |     |     |     |       |     |      |      |      |
| CO3     | 3                                                                           |     | 3   |     |     | 2   |     |       |     | 3    |      | 2    |
|         |                                                                             |     |     |     |     |     |     |       |     |      |      |      |
| CO4     | 3                                                                           | 2   |     |     |     | 2   |     |       |     | 3    |      | 2    |
|         |                                                                             |     |     |     |     |     |     |       |     |      |      |      |
| Complet | Completion level. 1 slight (Level) 2 medenate (Medium) 2 substantial (Uish) |     |     |     |     |     |     | Ligh) |     |      |      |      |

### MAPPING OF COs AND POs

Correlation level:1- slight (Low)2- moderate (Medium)3-substantial (High)

### **COURSE SYLLABUS:**

| Topics                                                                                                                                                                                                                                                                                                                                                      | Number of<br>Lectures | Weightage<br>(%) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------|
| <b>Digital Principle :</b><br>Analog vs Digital, Number system, Computer Codes, Digital<br>Signals, Waveforms Positive and Negative logic, Logic Gate:<br>basic, universal and others, Truth Table, Logic functions, IC<br>Chips, Timing Diagram, and Electrical analogy.                                                                                   | 4                     | 10               |
| <b>Boolean laws and theorems:</b><br>Logic functions, conversion of logic functions into truth table<br>and vice versa. SOP and POS forms of representation, min<br>terms and max terms, simplification of logic functions by<br>theorems and Karnaugh's map, don't care conditions, design of<br>special purpose computers and related practical problems. | 5                     | 13               |
| Analysis and synthesis of combinational logic circuits:<br>Adder and substructures (look-ahead adders), Multiplexers, de<br>multiplexers, Encoders, decoders, code convertors, magnitude<br>comparators, parity generators and checkers.                                                                                                                    | 6                     | 17               |
| <b>Integrated circuit logic families :</b><br>RTL, DTL, TTL, CMOS, IIL/I <sup>2</sup> L<br>(Integrated injection logic & emitter coupled logic).                                                                                                                                                                                                            | 4                     | 10               |
| Sequential Circuits:<br>Sequential circuit blocks and latches, flip flops- race around<br>condition, master slave and edge triggered, SR, JK, D & T<br>Flip Flop, shift registers, counters- synchronous and<br>asynchronous: design of ripple counter.                                                                                                     | 10                    | 23               |
| <b>Timing circuit :</b><br>Multivibrators: mono stable and astable timer: LM555.                                                                                                                                                                                                                                                                            | 4                     | 10               |
| ADC and DAC Converters:<br>Use of building blocks in designing larger systems such as<br>digital to analog converters(DAC) weighted resistors and r-2r,<br>analog to digital(ADC)- comparator, counter and succession.                                                                                                                                      | 5                     | 12               |
| Memories :<br>Static and dynamic RAMs, ROM, EPROM, and EEPROM.                                                                                                                                                                                                                                                                                              | 2 40                  | 5                |

#### GATE SYLLABUS

Number representations and computer arithmatic (fixed and floating point), boolean algebra, combinational and sequential circuits, minimization.

## TIME TABLE MUZAFFARPUR INSTITUTE OF TECHNOLOGY

## B.Tech. 3<sup>rd</sup> (Third) Semester (2017 Batch) PROVISIONAL TIME TABLE WITH EFFECT FROM 23.07.2018

| 3 <sup>RD</sup> SEMESTER INFORMATION TECHNOLOGY |                     |                     |               |                          |                   |               |                   |                   |
|-------------------------------------------------|---------------------|---------------------|---------------|--------------------------|-------------------|---------------|-------------------|-------------------|
|                                                 |                     | [                   | ROOM NO. 1    | 5A                       |                   |               |                   |                   |
|                                                 | 9:00 - 10:00        | 10:00 - 11:00       | 11:00 - 12:00 | 12:00 – 1: 00            | 1:00<br>-<br>2:00 | 2:00-<br>3:00 | 3:00<br>-<br>4:00 | 4:00<br>-<br>5:00 |
| MON                                             |                     | DE (IT)<br>(UF) 15A |               |                          | R                 |               |                   |                   |
| TUES                                            |                     | DE (IT)<br>(UF) 15A |               |                          | Ε                 |               |                   |                   |
| WED                                             | DE (IT)<br>(UF) 15A |                     |               |                          | С                 | DE L          | AB (UF+           | ·SR)              |
| THUR                                            |                     |                     |               |                          | E                 |               |                   |                   |
| FRI                                             |                     |                     |               |                          |                   |               |                   |                   |
| SAT                                             |                     |                     |               | DE (IT) (T)<br>(UF) 15 A | S                 |               |                   |                   |
| FACULTY                                         | NAME : UF : UM      | 1AR FAROOQUE        |               |                          | 3                 |               |                   |                   |

#### **STUDENT LIST:**

| SL.<br>NO. | ROLL<br>NO. | NAME                   |  |  |
|------------|-------------|------------------------|--|--|
| 1          | 16IT15      | BHANU KUMAR RANJAN     |  |  |
| 2          | 16IT07      | RISHIKESH BHARDWAJ     |  |  |
| 3          | 16IT30      | SUNIL KUMAR            |  |  |
| 4          | 17IT13      | RIYA AGRAWAL           |  |  |
| 5          | 17IT16      | ANURAG PRAKASH         |  |  |
| 6          | 17IT04      | PRATYASHA SHREE        |  |  |
| 7          | 17IT01      | ANKIT JHA              |  |  |
| 8          | 17IT03      | PREETI                 |  |  |
| 9          | 17IT05      | SUDHAKAR PRAKASH       |  |  |
| 10         | 17IT12      | RISHABH KUMAR          |  |  |
| 11         | 17IT10      | NITISH SHRIVASTAVA     |  |  |
| 12         | 17IT08      | ALOK KUMAR             |  |  |
| 13         | 17IT07      | RAHUL KUMAR SINHA      |  |  |
| 14         | 17IT21      | APURVA SINGH           |  |  |
| 15         | 17IT06      | ABHISHEK KUMAR         |  |  |
| 16         | 17IT18      | RITESH KUMAR           |  |  |
| 17         | 17IT25      | ANUPAM SINGH           |  |  |
| 18         | 17IT09      | LUV                    |  |  |
| 19         | 17IT38      | ANURAG GUPTA           |  |  |
| 20         | 17IT31      | SHUBHAM KUMAR          |  |  |
| 21         | 17IT32      | ARVIND KUMAR           |  |  |
| 22         | 17IT24      | SHANTANU KUMAR         |  |  |
| 23         | 17IT19      | ESHA NANDINI           |  |  |
| 24         | 17IT35      | ABHINAV KUMAR ANAND    |  |  |
| 25         | 17IT22      | SHUBHAM KUMAR          |  |  |
| 26         | 17IT28      | IFFAT NAAZ             |  |  |
| 27         | 17IT34      | VIKASH KUMAR           |  |  |
| 28         | 17IT41      | ANKIT KUMAR            |  |  |
| 29         | 17IT36      | MD OBAIDULLAH          |  |  |
| 30         | 17IT29      | NEESHA BHARTI          |  |  |
| 31         | 17IT20      | SURBHI KUMARI          |  |  |
| 32         | 17IT40      | SHUBHAM KUMAR          |  |  |
| 33         | 17IT46      | AMAN SHRAFF            |  |  |
| 34         | 17IT47      | RAKESH KUMAR<br>PRASAD |  |  |

| 35 | 17IT39 | RAHUL KUMAR JHA        |  |
|----|--------|------------------------|--|
| 36 | 17IT27 | MALA KUMARI            |  |
| 37 | 17IT23 | NIVEDITA KUMARI        |  |
| 38 | 17IT43 | JUHI KUMARI            |  |
| 39 | 17IT48 | NAVNEET KUMAR          |  |
| 40 | 17IT37 | MASUM RAJA             |  |
| 41 | 17IT44 | ABHISHEK KUMAR         |  |
| 42 | 17IT42 | ANURAG KUMAR<br>SHARMA |  |
| 43 | 17IT45 | AKANKSHA ANAND         |  |
| 44 | 17IT26 | VINEETA                |  |
| 45 | 17IT30 | KUMAR SHIVAM           |  |

#### **Text Books:**

**TB1:** Digital circuits and design, by S. Salivahanan, and S. Arivazhagan **TB2:** Modern digital electronics by R.P Jain, TMH

# **Reference Books:**

**RB2:** Digital fundamentals by Floyd and Jain, Pearson

### **COURSE PLAN**

| Topic No. | Торіс                                                                                                                                                                                      | No. of Lecture/ | Text<br>book/Reference |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------|
|           |                                                                                                                                                                                            | iccure no.      | Book                   |
| 1.        | Analog vs Digital, Digital Signals.<br>Number system, conversion of a<br>number from one number system to<br>other, and<br>Computer Codes, conversion of<br>codes from one code to others. | 2               | TB1, TB2, RB1          |
|           | Waveforms Positive and Negative<br>logic, Logic Gate: basic, universal<br>and others, Truth Table, Logic<br>functions, IC Chips, Timing<br>Diagram, and Electrical analogy.                | 2               | TB1, TB2, RB1          |
| 2.        | Logic functions, conversion of logic<br>functions into truth table and vice<br>versa. SOP and POS forms of<br>representation, min terms and max<br>terms,                                  | 2               | TB1, TB2               |
|           | Simplification of logic functions by<br>theorems and Karnaugh's map,<br>don't care conditions, design of<br>special purpose computers and                                                  | 3               | TB1, TB2               |

|    | related practical problems.                  |    |          |
|----|----------------------------------------------|----|----------|
|    |                                              |    |          |
| 3. | Adder and substructures (look-ahead adders), | 2  | TB1, TB2 |
|    | Multiplexers, de multiplexers,               | 1  |          |
|    | Encoders, decoders, code                     | 3  |          |
|    | convertors, magnitude comparators,           |    |          |
|    | parity generators and checkers.              |    |          |
|    |                                              |    |          |
| 4. | Sequential circuit blocks and                | 5  | TB1, TB2 |
|    | latches, flip flops- race around             |    |          |
|    | condition, master slave and edge             |    |          |
|    | triggered, SR, JK, D & T Flip Flop.          |    |          |
|    | Shift registers                              | 2  |          |
|    | Counters- Synchronous and                    | 3  |          |
|    | asynchronous, design of ripple               |    |          |
|    | counter.                                     |    |          |
| 5  | ADC and DAC Convertors:                      | 2  | TD 1     |
| 5. | Abe and bac conventers.                      | 5  | IDI      |
|    | larger systems such as digital to            |    |          |
|    | analog converters (DAC) weighted             |    |          |
|    | resistors and R-2R.                          |    |          |
|    |                                              |    |          |
|    | Analog to digital (ADC) -                    | 2  |          |
|    | comparator, counter and succession.          |    |          |
|    |                                              |    |          |
| 6. | Timing circuit :                             | 4  | TB1, TB2 |
|    | Multivibrators: mono stable and              |    |          |
|    | astable timer: LM555.                        |    |          |
|    |                                              |    |          |
| 7. | Integrated circuit logic families :          | 4  | TBI      |
|    | RIL, DIL, IIL, CMOS, IIL/I <sup>2</sup> L    |    |          |
|    | (Integrated injection logic & emitter        |    |          |
|    | coupled logic).                              |    |          |
| 8  | Memories :                                   | 2  | TB1 TB2  |
| 0. | Static and dynamic RAMs ROM                  | -  | 101, 102 |
|    | EPROM. and EEPROM.                           |    |          |
|    | Total Number of Lecture                      | 40 |          |
|    |                                              |    |          |

# **Question Bank:**

| http://www.akubihar.com                                                                                                                                                                         | http://www.akubihar.com                                                                                             |                                                    | http://www.akubihar.com                                                                                                                                                                                                                               | http://www.akubihar.com                                                                           |                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------|
| B.Tech 3rd Semester                                                                                                                                                                             | Code: 041302<br>Examination, 2016                                                                                   |                                                    | (i) 1<br>(ii) 2<br>(iii) 4                                                                                                                                                                                                                            |                                                                                                   |                         |
| Digital Ele                                                                                                                                                                                     | ctronics                                                                                                            |                                                    | (iv) 8                                                                                                                                                                                                                                                |                                                                                                   |                         |
| Time : 3 hours<br>Instructions :<br>(i) There are Nine Quest<br>(ii) Attempt Five quest<br>(iii) Question No. 1 is (<br>(iv) The marks are indica.                                              | Full Marks : 70<br>tions in this Paper.<br>tions in all.<br>Compulsory.<br>ted in the right hand margin.            | http://www.akubihar.com<br>http://www.akubihar.com | <ul> <li>(c) The NOR Gate is:</li> <li>(i) AND gate</li> <li>(ii) NAND gate</li> <li>(iii) NOT gate</li> <li>(iv) None of the at</li> <li>(d) Digital circuit can t</li> <li>(i) OR gates</li> <li>(ii) NOT gates</li> <li>(iii) NAND gate</li> </ul> | OR gate followed by<br>to ve<br>be made by the repeated use of                                    | http://www.akubihar.com |
| <ul> <li>(a) How many bytes are cont</li> <li>(i) 3</li> <li>(ii) 4</li> <li>(iii) 2</li> <li>(iv) None of the above</li> <li>(b) If a Hexadecimal number each hexadecimal digit, th</li> </ul> | tained by 32 bits ?<br>$1 \le -2 \le \frac{1}{4}$<br>needs to convert to binary. For<br>here will be how many bits. | http://www.akubihar.com<br>http://www.akubihar.com | (iv) None of the above<br>(iv) The Boolean expression<br>(i) $\overline{\chi}$<br>(ii) Y<br>(iii) Z<br>(iv) (X+Y)Z<br>(f) A full adder circuit matrix<br>(if) Two 2-input ANII<br>(ii) Two half adders a<br>Code : 041302                             | tion: XYZ+YZ+XZ can be reduced to<br>$m + \pi + $ | http://www.akubihar.com |
| http://www.akubihar.com                                                                                                                                                                         | P.T.O.<br>http://www.akubihar.com                                                                                   |                                                    | http://www.akubihar.com                                                                                                                                                                                                                               | http://www.akubihar.com                                                                           |                         |



|        |                                                             |              | 100         | http://www.akubihar.com                                                                                                 |
|--------|-------------------------------------------------------------|--------------|-------------|-------------------------------------------------------------------------------------------------------------------------|
| 2/ (a) | What is de-Morgan's theorem ? Solve using this theorem      | R            |             | 5. (a) Explain the operation of a 2-input CMOS NOR gate. 6                                                              |
|        | to prove the following:                                     |              |             | (b) Explain merits and demerits of different logic families. 8                                                          |
|        | $(A+B)\cdot(C+D) = (\overline{A+B})+(C+D)$ 6                |              |             | 6. (a) Explain the working of D & T Flip-Flops with help of                                                             |
| (b)    | Realize the following function with the help of NAND        |              |             | state table, excitation table and block diagram. 6                                                                      |
|        | gates: 8                                                    | http://      | http://w    | (b) Design a 4-bit ring counter using D Flip-Flop. 8                                                                    |
|        | $F(A, B, C, D) = \Sigma_m(0, 1, 4, 12) + d(2, 3, 8)$        | www.akubilia | ww.akubihar | (a) Differentiate between synchronous and asynchronous                                                                  |
| 4. 13  | ) Write a short notes on any two: 6                         | 17.60M       | r.com       | http://www.akubihar.com                                                                                                 |
|        | (i) Excess-3 code                                           |              |             | (b) Convert J-K Flip-Flop into S-R Flip-Flop. Explain with<br>help of excitation table characteristic anyonic and black |
|        | (ii) Gray code                                              |              |             | diagram. 8                                                                                                              |
|        | (iii) 3-bit even parity generator                           | http://ww    | http://w    | http://www.akubihar.com                                                                                                 |
|        | (iv) 2-bit magnitude comparator                             | rw.akubi     | ww.akut     | 8. (a) Explain with the help of a diagram, the principle of                                                             |
| (b)    | Design a circuit diagram of 4-bit even parity checker using | har.com      | ihar.con    | operation of R-2R ladder D/A converter. 6                                                                               |
| -      | XOR gates. Explain with help of truth table and Boolean     |              | -           | (b) Draw the functional block diagram of timer LM555, and                                                               |
|        | equation. 8                                                 |              |             | explain how it can be used to obtain a Monostable                                                                       |
|        |                                                             |              |             | Multivibrator. 8                                                                                                        |
| Code   | 041302 5 PTO.                                               |              |             | Code: 041302 6                                                                                                          |
| h h    | ttp://www.akubihar.com http://www.akubihar.com              |              |             | http://www.akubihar.com                                                                                                 |

|      | h    | ttp://www.akubihar.com                | http://www.akubihar.com            |
|------|------|---------------------------------------|------------------------------------|
| 9.   | (a)  | Draw the circuit diagram of examples. | ROM and explain with sutiable<br>6 |
|      | (b)  | Explain Parallel Encoded              | ADC (Flash type ADC) with          |
|      |      | help of block diagram.                | 8                                  |
|      |      | ***                                   |                                    |
|      |      |                                       | 4                                  |
|      |      |                                       |                                    |
|      |      |                                       |                                    |
|      |      |                                       |                                    |
|      |      |                                       |                                    |
|      |      |                                       |                                    |
|      |      |                                       |                                    |
|      |      |                                       |                                    |
| Code | : 04 | 41302                                 | 7                                  |

http://www.akubihar.com

http://www.akubihar.com

http://www.akubihar.com

Code: 041302 http://www.akubihar.com

#### Code : 041302

# (2)

| 2012<br>DIGITAL ELECTRONICS                                                                                                                                                                                                                                                       | (c) When two 16-input multiplexers drive a<br>2-input MUX, what is the result?<br>(i) 2-input MUX                                                                                                                                                              |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Time : 3 hours akubihar.com Fuli Marks : 70                                                                                                                                                                                                                                       | (ii) 4-input MUX<br>(iii) 16-input MUX<br>(iii) 32-input MUX                                                                                                                                                                                                   |  |  |
| Instructions :                                                                                                                                                                                                                                                                    | lest on majore marks                                                                                                                                                                                                                                           |  |  |
| <li>(i) All questions carry equal marks.</li>                                                                                                                                                                                                                                     | (d) The 'race-around' condition occurs when                                                                                                                                                                                                                    |  |  |
| (ii) There are <b>NINE</b> questions in this paper.                                                                                                                                                                                                                               | (i) $J = 0, K = 0$                                                                                                                                                                                                                                             |  |  |
| (iii) Attempt FIVE questions in all.                                                                                                                                                                                                                                              | $(\vec{u})  J = 0,  K = 1$                                                                                                                                                                                                                                     |  |  |
| (iv) Ouestion No. 1 is compulsory.                                                                                                                                                                                                                                                | $(uy \ b = 1, \ K = 0$<br>• $(uy \ J = 1, \ K = 1$                                                                                                                                                                                                             |  |  |
| <ol> <li>Choose the correct answer (any seven) :         <ul> <li>(a) The decimal equivalent of binary numbe 1101:0011 is</li> <li>(i) 12:1875</li> <li>(ii) 13:1875</li> <li>(iii) 11:1865</li> <li>(iv) 13:1865</li> </ul> </li> <li>(b) A full adder can be made of</li> </ol> | <ul> <li>(e) The maximum possible number of states in a ripple counter with 5 flip-flops is</li> <li>(i) 32</li> <li>(ii) 15</li> <li>(iii) 10</li> <li>(iv) 5</li> <li>(f) The digital circuit using two inverters shown in the figure will act as</li> </ul> |  |  |
| $\langle i \rangle$ two half adders                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                |  |  |
| (ii) two half adders and a NOR gate                                                                                                                                                                                                                                               | (i) a bistable multivibrator                                                                                                                                                                                                                                   |  |  |
| <ul> <li>(iii) two half adders and an OR gate</li> </ul>                                                                                                                                                                                                                          | (ii) an astable multivibrator                                                                                                                                                                                                                                  |  |  |
| (iv) two half adders and an AND gate                                                                                                                                                                                                                                              | (iii) a monostable multivibrator                                                                                                                                                                                                                               |  |  |
| AK13-650/74 akubihar.com (Turn Over                                                                                                                                                                                                                                               | (iv) an oscillator<br>AK13—650/74 <b>akubihar.com</b> (Continued)                                                                                                                                                                                              |  |  |

|        | (3)                                                                                                                                        | akubihar.com                             |      | (4)                                                                                                                                                        |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (g)    | The logic circuit which b<br>non-saturated logic is                                                                                        | belongs to .2.                           | (a.) | Draw a full-adder circuit and explain its operation.                                                                                                       |
| ,<br>Ø | (i) ECL<br>(ii) TTL<br>g(iii) CMOS                                                                                                         |                                          | (b)  | Explain the general principle of counter-type $A/D$ converter.                                                                                             |
| (h)    | ful NMOS<br>A 12-bit A/D converter has<br>0-10 V. What is the approximate                                                                  | <b>3.</b><br>a range of<br>e resolution  | (a)  | State and prove de Morgan's theorem. How<br>is it helpful in minimizing a given Boolean<br>expression?                                                     |
|        | of the converter?<br>(i) 1 mV<br>(ii) 2:5 mV                                                                                               |                                          | (b)  | Show that $\langle i \rangle = \overline{\overline{A} + B} + \overline{\overline{A} + \overline{B}} = A$                                                   |
|        | (iii) 2·5 μV akubihar.com<br>(iv) 12 mV                                                                                                    | n                                        |      | $ \begin{aligned} (ii)  (A+B)(B+C)(C+A) &= AB+BC+CA \\ (iii)  AB+\overline{B}\ \overline{C}+A\overline{C} &= AB+\overline{B}\ \overline{C} \end{aligned} $ |
| (i)    | Which one of the following staten<br>RAM is not correct?                                                                                   | nents about                              | (c)  | Simplify $B + A\overline{B} + AB$ .                                                                                                                        |
|        | <ul> <li>(i) RAM stands for random acc</li> <li>(ii) It is also called read/write</li> <li>(iii) When power supply is switching</li> </ul> | ss memory . 4.<br>memory<br>hed off, the | (a)  | What is J-K flip-flop? How can problems associated with R-S flip-flop be eliminated with the help of J-K flip-flop?                                        |
|        | <ul> <li>(iv) The binary contents are<br/>stored in the RAM chip</li> </ul>                                                                | uly lost<br>entered or<br>during the     | (b)  | Design a 3-bit synchronous counter using<br>J-K flip-flops. akubihar.com                                                                                   |
| 676    | manufacturing                                                                                                                              | 5.                                       | (a)  | How do you realise a parity bit checker?                                                                                                                   |
| U      | ine minimum number of flip-fle<br>to construct a mod-75 counter :<br>(i) 5<br>(ii) 6                                                       | op required<br>is                        | .(b) | Describe the operation of the parallel in serial out shift register with neat logic diagram.                                                               |

۰.

(iii) 7

(iv) 8

6. Design a mod-8 up-down counter.

| akubihar.com | ( Turn Over ) | AK13—650 <b>/74</b>      | akubihar.com                         | ( Continued )                                     |
|--------------|---------------|--------------------------|--------------------------------------|---------------------------------------------------|
|              |               |                          |                                      | 1 4                                               |
|              | akubihar.com  | akubihar.com (Turn Over) | akubihar.com (Turn Over) AK13—650/74 | akubihar.com (Turn Over) AK13—650/74 akubihar.com |

#### akubihar.com

#### (5)

#### akubihar.com

- (a) Design a 100 kHz, 60% duty cycle square wave generator using 555 timer.
  - (b) A D/A converter has a full-scale analog output of 10 V and accepts six binary bits as inputs. Find the voltage corresponding to each analog step.
- A digital system has four bits of a 4-bit word ABCD as inputs. The output Y is equal to 1 when any two adjacent bits are 1, or any three or all four bits are 1.
  - (a) Draw the Karnaugh map for Y.
  - (b) Realise Y using 2-input and http://www.akubihar.com/ gates only.
- 9. Write short notes on the following :
  - (a) EEPROM

5

- (b) DTL logic
- (c) Race-around condition
- (d) Encoders

\* \* \*

#### akubihar.com

AK13--650/74

Code : 041302

### Code : 041302

| B.Tech 3rd Semester Exam., 20                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| DIGITAL ELECTRONICS                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |
| Time: 3 hours Full Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                | rks : 70                       |
| Instructions :                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |
| <ul> <li>(i) The marks are indicated in the right-hand</li> <li>(ii) There are NINE questions in this paper.</li> <li>(iii) Attempt FIVE questions in all.</li> <li>(iv) Question No. 1 is compulsory.</li> <li>1. Choose the correct option of the follow (any seven) : <ul> <li>(a) Universal gate is</li> <li>(i) AND gate</li> <li>(ii) OR gate</li> <li>(iii) NAND gate</li> <li>(iv) XOR gate</li> </ul> </li> <li>(b) Number of minimum 2-input NA</li> </ul> | margin.<br>ing<br>2×7=14<br>ND |
| gates required to make half-ade<br>circuit is                                                                                                                                                                                                                                                                                                                                                                                                                        | der                            |
| <i>(i)</i> 2                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |
| (ii) 3<br>(iii) 4                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |
| (iu) 5                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |
| AK16/316 / Turn                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (Denie 1                       |

# (2)

| (0) | Which one of the following is a          | (g) Sequential circuit output depends upon     |
|-----|------------------------------------------|------------------------------------------------|
|     | sequential circuit?                      | (i) present input and previous output          |
|     | (i) Mux                                  | (ii) present input and present output          |
|     | (ä) Half-adder                           | (iii) only present input                       |
|     | (iii) Demux                              | (iv) None of the above                         |
|     | (iv) Flip-flop                           | (h) For the design of one full-adder circuit.  |
| (đ) | Which one of the following circuits is a | the required number of half-adder is           |
|     | combinational circuit?                   | <i>(i)</i> 1                                   |
|     | (i) Counter                              | (ii) 2                                         |
|     | (ii) Register                            | (iii) 3                                        |
|     | (iii) Memory                             | (iv) 4                                         |
|     | (iv) Mux                                 | a die Deutenie die een af fall adder           |
| (e) | Number of flip-flop required to make     | circuit using NAND gates. 6                    |
|     | modulo-6 counter is                      | (b) Draw and explain the circuits of           |
|     | (i) 1                                    | monostable and bistable multivibrators. 8      |
|     | (ü) 2                                    | 3. (a) Draw the circuit diagram of 1 : 8 demux |
|     | (111) 3                                  | and explain. 6                                 |
|     | (iv) 4                                   | (b) Design priority encoder and explain the    |
| Ð   | Combinational circuit output depends     | circuit with suitable truth table.             |
| "   | upon                                     | 4. (a) Draw the circuit diagram of 2-input     |
|     | (i) present input                        | NAND gate using CMOS logic and                 |
|     | (ii) present output                      | transistors. 6                                 |
|     | (iii) previous output                    | (b) Explain the differences between TTL        |
|     | (iv) None of the above                   | and CMOS logic. 8                              |
| (   | ( Continued )                            | AK16/316 (Turn Over)                           |
| 131 |                                          |                                                |

(3)

#### LIST OF THE EXPERIMENTS

- 1. Truth table verification of different logic gates- AND, OR, NOT, NAND, NOR, X-OR, and X-NOR.
- 2. Realization of basic Gates using universal Gates.
- 3. Design of half and full adder circuits.
- 4. Design of half and full subtractor circuits.
- 5. Design of code converters circuits-Binary to Gary code, and Gray to Binary code.
- 6. Design of magnitude comparator circuits.
- 7. Study of multiplexer (MUX) & demultiplexer (DEMUX) circuits.
- 8. Design of shift register.
- 9. Study of different types of Flip Flops (FFs)-SR-FF, JK-FF, D-FF, and T-FF.
- 10. Conversion from one Flip Flop (FF) to others.