Muzaffarpur Institute of Technology (MIT), Muzaffarpur (Under the Department of Science & Technology Govt. of Bihar, Patna) Department of Electronics and Communication B.Tech 3 rd Semester Weekly Exam - 1, 2018 Solid state physics and devices			
SET: 1	TIME: 20 min		FULL MARKS: $10 imes 1 = 10$
Topic: - prerequisite knowledge for SSPD			
NAME:			REG. NO
(1) Carrier life time is	the amount of the ti	me between the cro	eation and disappearance of a/an
(a) Free electron	(b) proton	(c) ion	(d) neutron
(2) How many electrons present in the outermost orbit in silicon			
(a) 1 (b) 2	(c) 3	(d) 4
(3) The maximum permissible number of electrons in the third orbit is			
(a) 18	(b) 8	(c) 32	(d) 2
(4) The reason why el	ectrons are not pullir	ng into the nucleus	of an atom
(a) Because o	f the centrifugal or o	utward force create	ed by their motion
(b) Because o	f force of attraction b	between them and	nucleus is weak
(c) Because they are not being attracted by the positive nucleus			
(d) Because o nucleus	f strong bonding the	m and they resist a	ny forces pulling them towards the
(5) Valence orbit is th	e other form for		
(a) Outer orbi	t (b) 3 rd orb	it (c) 4 th orbit	(d) 2 nd orbit
(6) A semiconductor i	s an element with a v	alence of	
(a) 4 (b) 8	(c) 2 (d) 1		
(7) Which orbit contro	ols the electrical prop	perty of an atom?	
(a) Valence orbit (b) first orbit (c) fourth orbit (d) M shell			
(8) Silicon that has been doped with a pentavalent impurity is called a/an			
(a) N type	(b) P type (c) intrinsic (d) e	xtrinsic

- (9) In a p-n junction when forward bias is applied
 - (a) Raises the potential barrier
 - (b) Reduces the majority carrier current is zero
 - (c) Lower the potential barriers
 - (d) None of the above

(10) In an n type silicon, which of the following statement is true

- (a) Electrons are majority carriers and trivalent atoms are dopants.
- (b) Electrons are minority carriers and pentavalent atoms are dopants.
- (c) Holes are minority carriers and pentavalent atoms are dopants.
- (d) Holes are majority carriers and trivalent atoms are dopants.