WEEKLY TEST EXAM – WEEK 2nd 23-07-18

5th SEMESTER ELECTRONICS AND COMMUNICATION

ANALOG ELECTRONICS

FULL MARKS-20

1. A Silicon diode is biased at 1mA current and working at 327° C temperature, value of small signal diode resistance ----- (Given, $V_T = 25 \text{mV}$ at

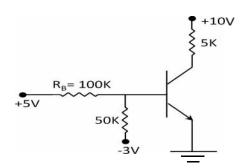
27° C.)

2. Consider the following statements S1 and S2

S1: The of a bipolar transistor increases if the base width is increased.

S2: The of a bipolar transistor increases if the doping concentration in the base is increased

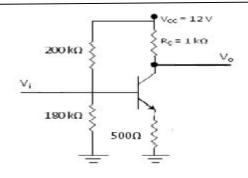
Which of the following is correct?

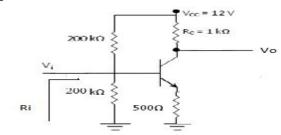

- a) S1 is false and S2 is true.
- b) Both S1 and S2 are true.
- c) Both S1 and S2 are false.
- d) S1 is true and S2 is false.
- 3. The magnitude of gain of fixed biased CE amplifier is 25, if a sinusoidal signal of 20 mV peak amplitude is applied to this amplifier. What will be the magnitude of output signal?
- a) -0.5V

b) 12.5mV

c) 20mV

- d) 0.5V
- 4. What is the region of operation for the transistor shown? [β = 100, $V_{BE,active}$ = 0.7V, $V_{BE,saturation}$ = 0.8V, $V_{CE,saturation}$ = 0.2V]
 - (a) Active

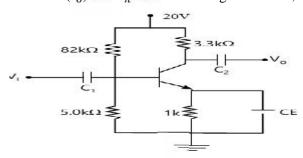

- (b) Saturation
- (c) Reverse Active
- (d) cut-off


5. Consider CE amplifier given below: $\beta = 75$

The mid-band voltage gain $\left| \frac{\mathbf{V}_0}{\mathbf{V}_i} \right|$ is: -----

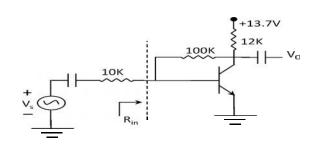
TIME-30 MINUTES

6. The input impedance, R_i for the CE amplifier shown in the figure below is: Use $V_T = 26$ mV, $\beta = 80$, $r_o \rightarrow \infty$


(a) 0.69 k

(b) 29 k

(c) $41 \text{ k}\Omega$


(d) 100 k

7. Determine the transconductance (g_m) , output resistance (r_0) and r_{π} for the circuit given below,

Where, early voltage $(V_A) = 100$ V and = 100

8. Draw the small signal model for circuit given below:

