MUZAFFARPUR INSTITUTE OF TECHNOLOGY (MIT), MUZAFFARPUR

COURSE FILE

OF

MODERN CONTROL THEORY

(EE 031815)

Faculty Name: Dr. N Kumar

ASSISTANT PROFESSOR,

DEPARTMENT OF ELECTRICAL ENGINEERING

विज्ञान एवं प्रावैधिकी विभाग Department of Science and Technology Government of Bihar

CONTENTS

- 1. Cover Page & Content
- 2. Vision of the Department
- 3. Mission of the department
- 4. PEO's and PO's
- 5. Course objectives & course outcomes (CO's)
- 6. Mapping of CO's with PO's
- 7. Time table
- 8. Student list
- 9. Course Handout
- 10.Lecture Plan
- 11. Assignment sheets
- **12. Tutorial Sheets**
- **13.Sessional Question Papers**
- 14.0ld End Semester Exam (Final Exam) Question Papers
- **15.Question Bank**
- 16.Results
- 17. Result Analysis

MUZAFFARPUR INSTITUTE OF TECHNOLOGY, MUZAFFARPUR-842003

(Under the Department of Science & Technology Govt. of Bihar, Patna)

VISION STATEMENT OF ELECTRICAL ENGINEERING DEPARTMENT

To produce cutting edge Electrical Engineers, innovators, researchers, and entrepreneurs with high human values to serve society, industry, nation and the world.

MISSION STATEMENT OF ELECTRICAL ENGINEERING DEPARTMENT

- M1. To create state-of-the-art facilities for under-graduate, post- graduate and R&D work.
- M2. To cater the needs of society with recent technologies, innovative ideas and inculcate ethical responsibilities.
- M3. To develop strong collaborative links with premier industries, institutions and the government agencies.

Govt. of Bihar

MUZAFFARPUR INSTITUTE OF TECHNOLOGY, MUZAFFARPUR-842003

(Under the Department of Science & Technology Govt. of Bihar, Patna)

Program Educational Objectives (PEOs) of Electrical Engineering Department:

- **PEO 1.** Students will be able to engage in life-long learning and research including supportive and responsible roles on multi-disciplinary tasks.
- **PEO 2.** Students will acquire, use and develop skills as required for effective professional and societal practices and leadership quality.
- **PEO 3.** Students will be able to create a new dimension of innovation and entrepreneurship.

Program Outcomes (POs) based on Program Educational Objectives (PEOs) of Electrical Engineering Department:

- **PO 1.** Students will be able to apply knowledge of applied mathematics & science in electrical engineering problems.
- **PO 2.** Students will be able to identify, formulate and solve society and industries related problems.
- **PO 3.** Students will be able to apply knowledge to design a system, component or process to meet desired needs within realistic constraints.
- **PO 4.** Students will be able to conduct laboratory experiments and to critically analyze and interpret experimental data.
- **PO 5.** Students will be able to use the recent techniques, skills, and modern tools necessary for engineering practices.
- **PO 6.** Students will be able to understand the impact of engineering problems, solutions in a global and societal context.
- **PO 7.** Students will be able to demonstrate professional and ethical responsibilities.
- **PO 8.** Students will be able to apply leadership quality to work with team in the area of electrical engineering towards the solution of multi-disciplinary tasks.
- **PO 9.** Students will be able to communicate effectively through verbally, technical writing, reports and presentation.
- **PO 10.** Students will be able to develop confidence for self-education and ability to engage in life-long learning.

Course Description

This course is designed to learn about the control of complex systems with multiple inputs and outputs through state space modeling. The course is designed such that the student will appreciate the relationship of transfer function in conventional control and state space equations in modern control systems. Student will learn the method of controlling the non-linear systems too.

Course Objectives

- 1. Students will be able to identify the modern control
- 2. Students will be able to differentiate between controllability and observability of state variables
- 3. Students will be able to design a control system for a given plant
- 4. Student will be able to analyze the stability of a control system
- 5. Student will be able to using MATLAB

Course Outcomes

- CO 1. Ability to express control system models on state space models
- CO 2. Ability to express state transition matrix and calculation of variables.
- CO 3. The concepts of controllability and observability.
- CO 4. Ability to design control system and optimal control system
- CO 5. Ability to apply nonlinear control system and phase pane method

CO-PO MAPPING

Sr. No.	Course Outcome	РО
CO 1.	Ability to express control system models on state space	PO1-PO4,PO7,PO8,PO9
	models	
CO 2.	Ability to express state transition matrix and calculation of	PO1-PO4,PO8
	variables.	
CO 3.	The concepts of controllability and observability	PO1-PO4,PO10
CO 4.	Ability to design control system and optimal control system	PO1- PO4,PO7,PO8,PO10
CO 5.	Ability to apply nonlinear control system and phase pane	PO1, PO2, PO3, PO6, PO10
	method	

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1. Ability to express									\checkmark	
control system models on										
state space models										
CO 2. Ability to express										
state transition matrix and										
calculation of variables										
CO 3. The concepts of										
controllability and										
observability.										
CO 4. Ability to design										
control system and optimal										
control system										
CO5 Ability to apply										
nonlinear control system and										
phase pane method										

B. Tech. VIII Semester (EE)

EE-031815 (MODERN CONTROL THEORY)

L T P/D Total	Max Marks:	100	
3-1-0 4		Final Exam:	70 Marks
		Sessional:	20 Marks
		Internals:	10 Marks.

UNIT-I

Development of state space model, state and state equation, transfer function from state equation and state equation from transfer function.

UNIT-II

State transient matrix, solution of state equation transfer matrix.

UNIT-III

Concept of controllability and absorbability

UNIT-IV

State variable feedback, state observes.

UNIT-V

Control system design via pole placement

UNIT-VI

Optimal control system introduction, performance in device, transfer function approach, state variable approach, parameter optimization

UNIT-VII

Non-liner system common non-liner stability system, method for studying non-liner system, linearization, describing function analysis.

UNIT-VIII

The phase plane method stability analysis using Lyapunov's direct method

Books:

- 1 Modern Control by Ogata, Pearson Education
- 2 Control Engineering: Theory & Practice by Bandopadhya, PHI

8th Semester EEE								
Period	I	II	III		IV	V	VI	
Day/	10:00-	11:00-	12:00-	01:00-	01:30-	02:30-	03:30-	
time	11:00	12:00	01:00	01:30	02:30	03:30	04:30	
MON		МСТ		L				
TUE	МСТ			N N				
WED				C				
THU		МСТ						
FRI		•	•	В				
				R				
CAT	мст			E				
SAT	MCI			A				
				K				
МСТ	MCT - MODERN CONTROL THEORY (031815) - ROOM NO. 112							

Student List

S. No.	Roll No	Name of Students
1	13E17	NEERAJ KUMAR
2	14E43	SHOAA AKBARI
3	14E01	AYUSH KUMAR
4	14E02	ANSHU PRIYA
5	14E05	ABHISHEK
6	14E06	UDIT KUMAR
7	14E07	NEHA KUMARI
8	14E08	DEEPAK KUMAR
9	14E09	NAVENDU JHA
10	14E10	VIKASH KUMAR
11	14E11	PANKAJ KUMAR RAMAN
12	14E12	KUMAR AYUSH
13	14E13	ADITYA KUMAR
14	14E14	SUDHAKAR PRASAD
15	14E15	SHWETA KUMARI
16	14E17	PAMIT KUMAR
17	14E19	MD SHAH JAHAN
18	14E20	CHANDAN PRAKASH
19	14E21	ASHUTOSH KUMAR
20	14E23	SHALU KUMARI
21	14E24	KANHAIYA LAL MANDAL
22	14E28	SURYA KANT PATEL

23	14E30	GULSHAN KUMAR
24	14E31	ARVIND KUMAR
25	14E32	SATISH KUMAR SINGH
26	14E33	AVINASH KUMAR
27	14E34	RANJIT KUMAR
28	14E35	RAVI RANJAN
29	14E36	ABHISHEK KUMAR
30	14E38	ALAKH NIRANJAN KUMAR
31	14E39	KAMLESH KUMAR
32	14E40	DHARAMVEER KUMAR
33	14E44	NITESH
34	14E47	BHAWNA SINHA
35	14E18	DEEP SHIKHA
36	14E22	ANURANJAN KUMAR
37	14E25	DEEPAK KUMAR
38	14E41	ABHISHEK RAJ
39	14E42	RAVINDAR KUMAR
40	14E45	KAMLESH KUMAR
41	14E46	CHANDAN KUMAR
42	14E48	AHMAD RAJA
43	14E16	LAVANYA
44	14E54	RAVI KANT SINGH
45	14E51	NIDHI
46	14E52	ROHIT
47	14E53	KUMARI PALLAVI
48	14E55	PRASHANT KUMAR
49	14E58	MD NAHID ALAM

PRINCE KUMAR	14E59	50
MANI RAJ	14E60	51
ALEKH RAJ	14E62	52
SURAJ KUMAR	14E63	53
RAJAN KUMAR	14E56	54
PANKAJ KUMAR SAW	14E61	55
SARITA KUMARI	15(LE)E05	56
PRATIBHA KUMARI	15(LE)E06	57
VICKEY KUMAR	15(LE)E01	58
ANAND KUMAR	15(LE)E03	59
SONAM SINHA	15(LE)E04	60
ABHISHEK KUMAR	15(LE)E07	61
ASHUTOSH KUMAR	15(LE)E08	62

Institute / School Name :	Muzaffarpur Institute of Technology (MIT), Muzaffarpur					
Program Name	B.Tech. EE					
Course Code	031815					
Course Name	MODERN CONTROL THEORY					
Lecture / Tutorial (per week):	3/1	Course Credits	4			
Course Coordinator Name	Dr. N Kumar					

1. Scope and Objectives of the Course

Scope: This course is designed to learn about the control of complex systems with multiple inputs and outputs through state space modelling. The course is designed such that the student will appreciate the relationship of transfer function in conventional control and state space equations in modern control systems. Student will learn the method of controlling the non-linear systems too.

Objectives:

- 1. Students will be able to identify the modern control
- 2. Students will be able to differentiate between controllability and observability of state variables
- 3. Students will be able to design a control system for a given plant
- 4. Student will be able to analyze the stability of a control system
- 5. Student will be able to using MATLAB

The course outcomes are:

- 1. Ability to express control system models on state space models
- 2. Ability to express state transition matrix and calculation of variables.
- 3 .The concepts of controllability and observability.
- 4. Ability to design control system and optimal control system
- 5. Ability to apply nonlinear control system and phase pane method

2. <u>Textbooks</u>

TB1: 'Modern Control by Ogata, 5th Pearson Education

Reference Books

RB1: ' Control Engineering: Theory & Practice by Bandopadhya, PHI

Other readings and relevant websites

S.No.	Link of Journals, Magazines, websites and Research Papers
1.	http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-011- introduction-to-communication-control-and-signal-processing-spring- 2010/http://mirror.mit-ocw.sbu.ac.ir/courses/civil-and-environmental-engineering/1-72- groundwater-hydrology-fall-2005/lecture-notes/
2.	http://nptel.ac.in/courses/108103007/

3. Course Plan

Lecture Number	Date of Lecture	Topics	Web Links for video lectures	Text Book / Reference Book / Other reading material	Page numbers of Text Book(s)
1-5		Development of state space model		TB1	88-94,765- 775
		State and state equation, transfer function from state equation and state equation from transfer function			
		Tutorial – :	1, Assignment I		
6-10		State transient matrix		TB1	776-790
		Solution of state equation transfer matrix			

	Tutorial – 2	l, Assignment II	
11-16	Controllability and Observability.	TB1	791-803
	Concept of controllability		
	and observability, state variable feedback		
	Tutorial - 3,	, Assignment III	
17-19	Control system design	TB1, RB1	838-921
	Control system design via pole placement; , state observer		
	Tutorial – 4,	, Assignment IV	
20-25	Optimal control system	RB1	362-454
	Introduction, performance in device, transfer function approach, state variable approach, parameter optimization		
	Tutorial - 5	, Assignment V	
	Mid-Semester Exam (Syllab	us covered from 1-25 lectures)	
26-33	Non-linear system	RB1	255-267
	Common non-liner		

	stability system, method				
	for studying non-liner				
	system, linearization,				
	describing function				
	analysis				
	Tutorial 6,	Assignment VI			
34-38	The phase pane method		RB1	268-288	
	Stability analysis using				
	Lyapunov's direct method				
	Tutovial 7 Assignment VII				
		A SSIGNMENT VII			

1. Evaluation Scheme:

Component 1*	Sessional Test (ST)*	20
Component 2	Assignment Evaluation	10
Component 3**	End Term Examination**	70
	Total	100

SYLLABUS

Topics	No of lectures	Weightage
State and state equation, transfer function from state equation	5	13%
and state equation from transfer function.		
State transient matrix, solution of state equation transfer matrix	5	13%
Concept of controllability and observability, State variable feedback.	6	16%
Control system design via pole placement; state observer	3	8%
Optimal control system: Introduction, performance in device, transfer function approach, state variable approach, parameter optimization	6	16%
opuninzation.		

Non-liner system: common non-liner stability system, method	8	21%
for studying non-liner system, linearization, describing		
function analysis.		
The phase plane method: Stability analysis using Lyapunov's	5	13%
direct method.		

This Document is approved by:

Designation	Name	Signature
Course Coordinator	Dr. N Kumar	
H.O.D	DR. YAGYANAND SHARMA	
Dean	DR. JAGNANAND JHA	
Date	22-06-2018	

Evaluation and Examination Blue Print:

Internal assessment is done through quiz tests, presentations, assignments and project work. Two sets of question papers are asked from each faculty and out of these two, without the knowledge of faculty, one question paper is chosen for the concerned examination. The components of evaluations along with their weightage followed by the University is given below

Sessional Test	20%
Internals	10%
End term examination	70%

Institute / School Name :	Muzaffarpur Institute of Technology (MIT), Muzaffarpur		
Program Name	B.Tech. EE		
Course Code	031815		
Course Name	MODERN CONTROL THEORY		
Lecture / Tutorial (per week):	3/1	Course Credits	4
Course Coordinator Name	Dr. N Kumar		

LECTURE PLAN

Topics	Lecture	Date on which the
	Number	Lecture was taken
Development of state space model		
Introduction	1	
State and state equation,	2	
transfer function from state equation	3	
state equation from transfer function	4-5	
State transient matrix		
Introduction	6	
Solution of state equation transfer matrix	7-10	
Controllability and Observability.		
Introduction,	11	
Concept of controllability	11-13	
Observability, state variable feedback	13-16	
Control system design		
Control system design via pole placement	17-18	
state observer	18-19	
Optimal control system		
Introduction,	20	
performance in device,	21	
transfer function approach,	22	

state variable approach,	23-24	
parameter optimization	25	
Non-linear system		
Introduction	26	
Common non-liner stability system,	27-29	
method for studying non-liner system,	30	
linearization,	31	
describing function analysis	32-36	
The phase pane method		
Stability analysis using Lyapunov's direct method	37-40	

Department of EE MODERN CONTROL THEORY

Assignment I

1. Derive a state space model for the system shown Fig.-1

Fig. (b)

2. Explain the property of the nonlinear systems.

3. With neat sketches explain (1) on-off controller, (2.) backlash, (3.) saturation, (4) singular point,(5) stability in the sense of liapunov, (6) asymptotic stability and (7) Instability, (8) jump response

4. Explain the delta method of obtaining the phase tranjectories.

5. Prove that ATp+pA=-Q for linear time invariant system.

6. Explain the concept of controllability and observability, with the condition for complete controllability and observability in the S- plane.

- 7. Write short notes on
- (a) Pole placement by state feedback.
- (b) state transition matrix
- (c) MIMO systems
- (d) Principle of duality due to kalman
- 8. Obtain a state space representation of the system

$$\frac{C(s)}{U(s)} = \frac{10(s+2)}{s^3 + 3s^2 + 5s + 15}$$

9. Discuss the state controllability of the system

$$\begin{bmatrix} \dot{X_1} \\ \dot{X_2} \end{bmatrix} = \begin{bmatrix} -3 & 1 \\ -2 & 1.5 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 4 \end{bmatrix} \mathbf{u}$$

Prove the conditions used.

10. Explain controllability and observability.

11. Define state of a system, state variables, state space and state vector. What are the advantages of state space analysis?

12. State liapunov stability theorems.

13. Given the procedural step of constructing phase trajectories using isoclines method.

Tutorial Sheet

1. Obtain the state space model for a system characterized by the following differential equation

$$\ddot{y} + \ddot{6y} + 5\dot{y} + y = u$$

Draw a block diagram using the state space model.

2. Obtain the state model of the given network shown in Figure 1, in the standard form. R1 = 1W, C1 = 1 f, R2 = 2W, C2 = 1 f, R3 = 3W. Choose voltage across capacitor C1 as e1 and voltage across capacitor C2 as e2 as state variables.

3. Obtain the state model of the given electrical system shown in Figure 2, choosing x1(t) = i(t) and x2(t) = vo(t), where x1(t) and x2(t) are state variables.

Figure 2:

<u>3.</u> Obtain a state-space representation of the system shown in Figure 3, where R and D are the inputs and Y is the output.

Figure 3:

4. Obtain a state-space representation of the mechanical system shown in Figure , where u1 is the input and y1 and y2 are the outputs.

6. Consider the system given by

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} u \end{bmatrix}$$

For this case,

$$\begin{bmatrix} \mathbf{B} \ \vdots \ \mathbf{AB} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} = \text{nonsingular}$$

The system is therefore completely state controllable. 7. Consider the system described by:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Is this system controllable and observable? 8. Consider the system defined by

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u$$

Show that the system cannot be stabilized by the state-feedback control scheme u=-Kx whatever matrix K is chosen. (Notice that this system is not state controllable.)

Muzaffarpur Institute of Technology (MIT), Muzaffarpur Mid-Semester (UG) Examinations, 2018

Subject Code: EE031609 Semester: 8th Duration: 2 Hrs. Instructions:

Subject: MCT Department: Electrical Engg. Total marks: 20

- (i) The marks are indicated in the right hand margin.
- (ii) There are **Six** questions in this paper.
- (iii) Attempt **Four** questions in all.

Answer the following questions

5

Ζ.	Explain controllability.	5
3.	Define state of a system, state variables, state space and state vector.	5
4.	Explain the concept of observability.	5
5.	Obtain a state space representation of the system	5
	C(s) = 10(s+2)	
	$\frac{1}{U(s)} - \frac{1}{s^3 + 3s^2 + 5s + 15}$	
6	What are the advantages of state space analysis.	5

.akubihar.com 7 (b) Draw the state variable diagram for the given transfer function. 7 C(s) 5s $\frac{R(s)}{R(s)} = \frac{3s^2}{3s^2 + 3s + 1}$ 3. (a) A system is characterize by the transfer function. Y(s)s+2 $\frac{U(s)}{U(s)} = \frac{1}{s^3 + 3s^2 + 2s + 10}$ 7 Find the state and output equations. www.akubihar.com (b) A system is described by the equations as 7 $\dot{\mathbf{x}}(t) \!=\! \begin{bmatrix} -1 & 1 \\ 0 & 2 \end{bmatrix} \mathbf{x}(t) \!+\! \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \! \mathbf{u}$ $\mathbf{y} = \begin{bmatrix} 1 & 2 \\ 1 & 0 \\ 1 & 1 \end{bmatrix} \mathbf{x}(t)$ Determine the transfer function.
 at on
 9. Write short n

 tibed
 a. Liapunov

 14
 b. State obs

 c. Stability:
 d. Dead-zor

 www.akubihar.comCode: 031815
4. Define controllability and observability. Comment on observability and controllability of the system described

. 2. (a) Derive the solution of homogeneous state equations.

$$\begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mathbf{u}$$

Code : 031815

 $y(t) = \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} x_t \\ x_t \end{bmatrix}$ 5. (a) Define the describing function. Derive the describing function for backlash or relay with dead zone. 8 (b) Discuss the stability analysis with describing function. 6 6. Write the properties of state transition matrices. Compute eAt when . 14 $A = \begin{bmatrix} 0 & 1 \\ -3 & -4 \end{bmatrix}$ 7. Given the plant G(s) = 20(s+5)/s(s+1)(s+2), design the phase variable feedback gains to yield 9.5% overshoot and a settling time of 0.74 second. 14 8. (a) Discuss common non-linearities present in a system. 7 (b) Discuss the state variable approach for optimal

WWW.

.akubihar.com

7

- control problem.
- 9. Write short notes on any two of the following. 2×7

3

- a. Liapunov's stability analysis
- b. State observer design
- c. Stability from phase plane
- d. Dead-zone

www.akutoihar.com

by the following state variable model.

Name of Faculty:- N Kumar Branch:-EE			
Course Code:- EE031815 Section:-8th sem.			
Date of exam:-			
Test Type	- Mid sem.		
Test Abbr	evation:mid sem		
Maximum	Marks	30	
Test Topic	::-MCT		
Sr	Roll No.	Marks	
1	13E17	25	
2	14E43	26	
3	14E01	26	
4	14E02	26	
5	14E05	27	
6	14E06	27	
7	14E07	28	
8	14E08	27	
9	14E09	25	
10	14E10	26	
11	14E11	26	
12	14E12	25	
13	14E13	26	
14	14E14	27	
15	14E15	26	
16	14E17	26	
17	14E19	27	
18	14E20	26	
19	14E21	19	
20	14E23	27	
21	14E24	26	
22	14E28	26	
23	14E30	28	
24	14E31	25	
25	14E32	28	
26	14E33	25	
27	14E34	26	
28	14E35	27	
29	14E36	26	
30	14E38	28	
31	14E39	27	

32	14E40	27
33	14E44	26
34	14E47	26
35	14E18	24
36	14E22	26
37	14E25	23
38	14E41	27
39	14E42	22
40	14E45	27
41	14E46	27
42	14E48	24
43	14E16	24
44	14E54	27
45	14E51	26
46	14E52	26
47	14E53	24
48	14E55	25
49	14E58	25
50	14E59	25
51	14E60	24
52	14E62	23
53	14E63	23
54	14E56	26
55	14E61	21
56	15(LE)E05	25
57	15(LE)E06	25
58	15(LE)E01	24
59	15(LE)E03	25
60	15(LE)E04	26
61	15(LE)E07	24
62	15(LE)E08	25

RESULT ANALYSIS

