DEPARTMENT OF PHARMACY MIT MUZAFFARPUR

AFFILIATED TO ARYABHATTA KNOWLEDGE UNIVERSITY, MITHAPUR, PATNA

NAME OF FACULTY: DR. SHREE NARAYAN SHARMA ASSOCIATE PROFESSOR, DEPARTMENT OF PHARMACY, M.I.T. MUZAFFARPUR

Contact Details: 9661247778

Email ID: shreenarayan25@rediffmail.com

NAME OF COURSE: PHARMACEUTICAL BIOTECHNOLOGY

COURSE CODE (T): 091704 COURSE CODE (P): 091702 P

SEMESTER : VII

ACADEMIC YEAR : 2018-2019

PHARMACEUTICAL CHEMISTRY -VII B. PHARM – SEVENTH SEMESTER

1. Course Syllabus

Module-1

Immunology and Immunological Preparations: Principles, antigens and haptens, immune system, cellular humorai immunity, immunological tolerance, antigen-antibody reactions and their applications. Hypersensitivity, Active and passive immunization, Vaccines-their preparation, standardization and storage.

Module-2

`Genetic Recombination: Transformation, conjugation, transduction, protoplast fusion and gene cloning and their applications. Development of hybridoma for monoclonal antibodies. Study of drugs produced by biotechnology such as Activase, Humulin, Humatrope, HB etc.

Antibiotics: Historical development of antibiotics.

Antimicrobial spectrum and methods used for their standardization. Screening of soil for organisms producing antibiotics, fermenter, its design, control of different parameters. Isolation of mutants, factors influencing rate of mutation.

Design of fermentation process. Isolation of fermentation products with special reference to penicillins, streptomycins tetracyclines and vitamin B12.

Module-3

Microbial Transformation:Introduction, types of reactions mediated by microorganisms, design of biotransformation processes, selection of organisms, biotransformation process and its improvements with special reference to steroids.

Enzyme immobilization: Techniques of immobilization, factors affecting enzyme kinetics. Study of enzymes such as hyaluronidase, penicillinase, streptokinase and streptodornase, amylases and proteases etc. Immobilization of bacteria and plant cells.

Recommended Books:

- 1. Industrial Microbiology by Casida.
- 2. Industrial Microbiology by A.H. Patel.
- 3. Industrial microbiology by Prescott and Dunn.
- 4. Pharmaceutical Biotechnology by Vyas and Dixit.
- 5. Molecularbiology and Genetic Engineering by
- A.M.Narayanan, A.M.Selvaraj, A.Mani
- 6. Text Book of Microbiology by Anantanarayana and Panicker.
- 7. Concepts in Biotechnology by Balasubramanium.
- 8. Molecular Biotechnology by Glick.

SAMPLE TIME TABLE

MUZAFFARPUR INSTITUTE OF TECHNOLOGY

DAY	SEMESTER	9 AM TO 10	10 -11 AM	11- 12 AM	12 -1 PM	2- : PN	
MON	THIRD SEM	APHE II SK	PHARM ANAL II GT	PHARMACEUTICS III AB	PHARMACOGNOSY II NRB		CLA
	FIFTH SEM	PHARMACEUTICS V RKC	Pl	HARMACEUTICS V LAB	RKC		CLA
	SEVENTH SEM	PHARMA. BIOTECH SNS	PHARM CHEM VII RP	PHARMA. INDUST. MANAG.	PHARMACOLOGY III RP		CLAS
TUES	THIRD SEM	PHARMACEUTICS III AB	PHARM CHEM IV SW	PHARMACEUTICS III AB(T)	PHARM ANAL II GT(T)	PH	ARMA LA
	FIFTH SEM	PHARM CHEM V SNS	PHARMACEUTICS VI AB	PHARMA CEUTICS V RKC	PHARMACOLOGY I SK	PHA	RM (
	SEVENTH SEM	PHARMACEUTICS VIII RKC	PHARM CHEM VII RP	PHARMACOLOGY III RP	PHARMACEUTICS VIII RKC(T)	PH	ARM <i>A</i>
WED	THIRD SEM		PHARMACOGNOSY II NRB(T)	PHARMACOGONOSY II NRB	PHAR ANAL II GT	PHA	RMA II LA
	FIFTH SEM	PHARMACOLOGY I SK	PHARM CHEM V SNS	PHARMACEUTICS VI AB	PHARMACOLOGY I SK(T)	PH	ARM.
	SEVENTH SEM	PHARM CHEM VII RP(T)	PHARMACEUTICS VIII RKC	PHARM CHEM VII RP	ELECTIVE OPT	PHA	RM (
THURS	THIRD SEM	APHE II SK(T)	PHARM CHEM IV SW	APHE II SK	PHARM CHEM IV SW(T)	PH	\RM
	FIFTH SEM	PHARM CHEM V SNS	PHARMACEUTICS VI AB	PHARMACOGONOSY IV SW		PHA	RMA

	SEVENTH	PHARMACEUTICS	PHARMA. BIOTECH	PHARMACOLOGY III	ELECTIVE OPT	EL	ECTIVE
	SEM	VIII RKC	SNS(T)	RP			
FRI	THIRD	APHE II SK	DHADM	 ACUTICAL CHEMISTRY I	VIAR SW		APHE I
FIXI	SEM	AFILLISK	FIIANW	ACOTICAL CILLWISTRY	V LAD SVV	4	AFTIL I
	FIFTH	PHARMACOGONOSY	PHARMACEUTICS	PHARMACOGONOSY	PHARMACEUTICS V	PH	RMA
	SEM	IV SW	V RKC	IV SW(T)	RKC(T)		LAB C
	SEVENTH		ELECTIVE OPT (T)	ELECTIVE OPT	PHARMA.	PH	ARMA
	SEM				BIOTECH.SNS		III RK
SAT	THIRD	PHARMACOGONOSY	PHARM CHEM IV	PHAR ANAL II GT	PHARMACEUTICS III		
	SEM	II NRB	sw		АВ		
	FIFTH	PHARM CHEM V	PHARMACOLOGY I	PHARMACEUTICS VI	PHARMACOGONOSY		
	SEM	SNS(T)	SK	АВ	IV SW		
	SEVENTH	PHARMACOLOGY III	PHARMA. INDUST.	PHARMA. BIOTECH			
	SEM	RP(T)	MANAG.	SNS			
L	1						

2. Program Objectives (POs)

The graduates of the programme will possess:

- 1. The knowledge of core concepts of Biotechnology.
- 2. The knowledge of antibiotics.
- 3. Modern methods of preparation drugs

3.Course Outcomes (COs)

1Recall the biochemical organization of the cell, transport process and describe enzymes and isoenzymes in the field of clinical diagnosis. metals and Vitamins as co-enzymes and their significance in human body.

2Explain the metabolism of carbohydrate, lipid, protein and their role in our body

4Analyze carbohydrate, lipid, protein, the generation of ATP and isolate RNA and DNA from different sources.

5.Illustrate various mechanism related to genetics, PCR, repair mechanism

4. Mapping of COs with Pos CO2 CO3 CO1 CO4 PO 1 2 4 5

6		
7		
8		
9		
10		
11		
12		

5. Assessment Methods for Cos

5.1. Theory

S.No	Assessment Tools	Marks	Outcomes
1	Sessional Examination	20	CO1 CO2 CO3
			CO4

2	Assignment	02	CO1 CO2 CO3
			CO4
3	Presentation	02	CO1 CO2 CO3
			CO4
4	Quizzes	01	CO1 CO2 CO3
			CO4
5	Attendance	05	NA
6	University Examination	70	NA

5.2. Practical

S.No	Assessment Tools	Marks	Outcomes
1	Attendance	05	CO1 CO2 CO3
			CO4
2	Experiment valuation	10	CO1 CO2 CO3
			CO4
3	Internal Viva- voce	05	CO1 CO2 CO3
			CO4
4	University Practical	30	CO1 CO2 CO3
	Exam		CO4

6. Delivery Methodology

Outcomes Methods Supporting	Tools
-----------------------------	-------

CO 1	Chalk-Talk, Interactive classroom, ICT usage, Case study discussion about diseases, Group discussions, Web based	Board, Laptop, Projector, You Tube, Whatsapp, Google,
CO2	learning Chalk-Talk, Interactive classroom, ICT usage, Case study discussion about diseases, Group discussions, , Web based learning	Board, Laptop, Projector, You Tube, Whatsapp, Google,
CO3	Chalk-Talk, Interactive classroom, ICT usage, Case study discussion about diseases, Group discussions, , Web based learning	Board, Laptop, Projector, You Tube, Whatsapp, Google,
CO4	Chalk-Talk, Interactive classroom, ICT usage, Case study discussion about diseases, Group discussions, Web based learning	Board, Laptop, Projector, You Tube, Whatsapp, Google,

7. Teaching plan

7.1. Theory

Lecture No.	Contents
1	Biochemical organization of the cell and transport processes across cell membrane.
2	Biochemical organization of the cell and transport processes across cell membrane.
3	The concept of free energy
4	determination of change in free energy -from equilibrium constant and reduction potential

5	Bioenergetics, production of ATP and its biological significance.
6	Enzymes: Nomenclature
7	Enzyme kinetics and its mechanism of action, mechanism of inhibition, Class Test
8	Enzymes and iso-enzymes in clinical diagnosis.
	· ·
9	Co-enzymes: Vitamins as co-enzymes and their significance
	Metals as co-enzymes and their significance.
10	Carbohydrate Metabolism: Conversion of polysaccharide to glucose-I-phosphate, Glycolysis
11	Fermentation and their regulation, Gluconeogenesis and glycogenolysis,
12	Fermentation and their regulation, Gluconeogenesis and glycogenolysis,
13	Metabolism of galactose and galactosemia,
14	Role of sugar nucleotides in biosynthesis, and Pentosephosphate pathway.
15	The Citric Acid Cycle: Significance, reactions and energetic of the cycle, Amphibolic role of the cycle, and Glyoxalic acid cycle.
16	The Citric Acid Cycle: Significance, reactions and energetic of the cycle, Amphibolic role of the cycle, and Glyoxalic acid cycle.
17	Lipids Metabolism: Oxidation of fatty acids, oxidation & energetic, a-oxidation, Class Test
18	Biosynthesis of ketone bodies and their utilization.
19	Biosynthesis of saturated and unsaturated fatty acids, Control of lipid metabolism
20	Essential fatty acids & eicosanoids (prostaglandins, thromboxanes and leukotrienes), phospholipids, and sphingolipids.
21	Essential fatty acids & eicosanoids (prostaglandins, thromboxanes and leukotrienes), phospholipids, and sphingolipids.

22	Biological Oxidation: Redox-potential, enzymes and co-enzymes
	involved in oxidation reduction & its control,
23	The respiratory chain, its role in energy capture and its control,
24	Energetics of oxidative phosphorylation,
25	Inhibitors of respiratory chain and oxidative phosphoryla
26	Mechanism of oxidative phosphorylation
27	Nitrogen Cycle, Nitrogen fixation. ammonia assimilation,
	nitrification and nitrate assimilation
28	Sulphur Cycle, Sulphate activation.
29	Sulphate reduction
	Class Test
30	Incorporation of sulphur in organic compounds. Release of
	sulphur from organic compounds.
	50-P-102 11 511 5180111 5 511-P 5 611-0-51
31	Metabolism of Ammonia and Nitrogen Containing Monomers
32	Biosynthesis of amino acids. Catabolism of amino acids.
33	Conversion of amino acids to specialized products, Assimilation
	of ammonia. Urea. cycle, metabolic disorders of urea cycle.
	Metabolism of sulphur containing amino acids
34	Porphyrin biosynthesis. formation of bile pigments.
	hyperbilirubinemia.
35	Purine biosynthesis. Purine nucleotide interconversion. Pyrimidine
	biosynthesis. and Formation of deoxyribounucleotides.
26	Discourds and a CNI and the Anidas Deighistana desertion of a surelin
36	Biosynthesis of Nucleic Acids: Brief introduction of genetic
	organization of the mammalian genome, alteration and
	rearrangements of genetic material, Biosynthesis of DNA and its
27	replication.
37	Mutation: Physical & chemical mutagenesis / carcinogenesis
38	DNA repair mechanism. Biosynthesis of RNA.
39	Genetic Code and Protein Synthesis: Genetic code
40	Components of protein synthesis and Inhibition of protein
	synthesis.
41	Brief account of genetic engineering and polymerase
	chain reactions.
42	Regulation of gene expression

7.2. Practical

Exp.	Experiment
No	•
1	Preparation of standard buffers (citrate, phosphate and
	carbonate) and measurement of pH
2	Titration curve for amino acids
2	Separation of amino acids by two dimensional paper
	chromatography and gel electrophoresis
3	The separation of lipids by TLC.
4	Separation of serum proteins by electrophoresis on cellulose
	acetate
5	Quantitative estimation of amino acids
6	Quantitative estimation of proteins
7	The identification of c-terminal amino acids of a protein
8	The determination of glucose by means of the enzyme
	glucose oxidase.
9	The isolation and assay of glycogen from the liver and
	skeletal muscle of rats
10	Enzymatic hydrolysis of glycogen by. alpha-and beta-
	amylases

11	The isolation and determination of RNA and DNA.
12	Effect of temperature on the activity of alpha -amylase.
13	.Estimation of SGOT, SGPT, ALP and BRN in the serum