Unit wise blow- Up

 UNIT – I
A language translator is a program which translates programs from source language in an equivalent program in an object language. The source language is usually a high-level programming language and the object language is usually the machine language of an actual computer. A compiler is a translator whose source language is a high-level language and whose object language is close the machine language of an actual computer. The typical compiler consists of an analysis phase and a synthesis phase. In contrast with compilers an interpreter is a program which simulates the execution of programs written in a source language. Interpreters may be used either at the source program level or an interpreter may be used it interpret an object code for an idealized machine. The typical compiler consists of several phases each of which passes its output the next phase
1. The lexical phase (scanner) groups characters in lexical units or kens. The input the lexical phase is a character stream. The output is a stream of kens. Regular expressions are used define the kens recognized by a scanner (or lexical analyzer). The scanner is implemented as a finite state machine.
1. The parser groups kens in syntactical units. The output of the parser is a parse tree representation of the program. Context-free grammars are used define the program structure recognized by a parser. The parser is implemented as a push-down automata.
1. The contextual analysis phase analyzes the parse tree for context-sensitive information often called the static semantics. The output of the contextual analysis phase is an annotated parse tree. Attribute grammars are used describe the static semantics of a program.
1. The optimizer applies semantics preserving transformation the annotated parse tree simplify the structure of the tree and facilitate the generation of more efficient code.
1. The code general transforms the simplified annotated parse tree in object code using rules which denote the semantics of the source language.
1. The peephole optimizer examines the object code, a few instructions at a time, and attempts do machine dependent code improvements.
Types of Compiler-
1. One-pass compiler
1. Multi-pass Compiler
1. Load & Go Compiler
1. Optimized Compiler
A one-pass compiler reads the program only once, and translates it at the same time as it is reading. A multi-pass compiler reads the program several times, each time transforming it in a different form and usually in a different data structure.
1. Cross Compiler-A cross compiler compiles a target language different from the language of the machine it runs on
1. Bootstrapping- Bootstrapping describe the techniques involved in writing a compiler or assembler) in the target programming language which it is intended compile.
1. LEX- LEX is a program general designed for lexical processing of character input streams. It accepts a high-level, problem oriented specification for character string matching, and produces a program in a general purpose language which recognizes regular expressions. The regular expressions are specified by the user in the source specifications given LEX. The LEX written code recognizes these expressions in an input stream and partitions the input stream in strings matching the expressions

UNIT II
The parsing is a process of finding a parse tree for a string of kens. Equivalently, it is a process of determining whether a string of kens can be generated by a grammar. There are two types of Parsing
1. Top-down Parsing (start from start symbol and derive string)
A Top-down parser builds a parse tree by starting at the root and working down wards the leaves.
0. Easy generate by hand.
0. Examples are- Recursive- descent, Predictive.
1. Bottom-up Parsing (start from string and reduce start symbol)
A bottom- up parser builds a parser tree by starting at the leaves and working up wards the root.
1. Not easy handle by hands, usually compiler- generating software generate bottom up parser
1. But handles larger class of grammar
1. Example is LR parser.
1. Operator precedence parsing- Bottom-up parsers for a large class of context-free grammars can be easily developed using operator grammars. Operator grammars have the property that no production right side is empty or has two adjacent non terminals. This property enables the implementation of efficient operator-precedence parsers
1. SLR parser - Simple LR parser or SLR parser is an LR parser or which the parsing tables are generated as for an LR(0) parser except that it only performs a reduction with a grammar rule A → w if the next symbol on the input stream is in the follow set of A. Such a parser can prevent certain shift-reduce and reduce-reduce conflicts. That occur in LR (0) parsers and it can therefore deal with more grammars. However, it still cannot parse all grammars that can be parsed by an LR(1) parser. A grammar that can be parsed by an SLR parser is called a SLR grammar.
1. Yacc-YACC stands for “Yet Another Compiler-Compiler”. this is because this kind of analysis of text files is normally associated with writing compilers. Yacc provides a general ol for imposing structure on the input a computer program. The Yacc user prepares a specification of the input process; this includes rules describing the input structure, code be invoked when these rules are recognized, and a low-level routine do the basic input. Yacc then generates a function control the input process

UNIT III
A syntax- directed translation is used define the translation of a sequence of kens some other value, based on a CFG for the input. A syntax- directed translation is defined by associating a translation rule with each grammar rule. A translation rule defines the translation of the left- hand -side conterminal as a function of eight-hand- side no terminals' translations, and the values of the right-hand-side terminals. compute the translation of a string, build the parse tree, and use the translation rules compute the translation of each conterminal in the tree, bottom-up; the translation of the string is the translation of the root conterminal. There is no restriction on the type of converted actions that manipulate the parser's semantic stack. Each action must pop all right-hand-side non terminals' translations from the semantic stack, then compute and push the left-hand-side non terminal's translation. Next, the actions are incorporated (as action numbers) in the grammar rules. Finally, the grammar is converted LL (1) form (treating the action numbers just like terminal or conterminal symbols).
1. Intermediate Code- The semantic phase of a compiler first translates parse trees in an intermediate representation (IR), which is independent of the underlying computer architecture, and then generates machine code from the IRs. This makes the task of retargeting the compiler another computer architecture easier handle
0. High-Level Intermediate Languages
1. Abstract syntax tree. Postfix notation is a linearized representation of an abstract syntax tree.
EXAMPLE- a = b*c + d is a b c * d + assign
1. Dependence graphs.
1. Medium-Level Intermediate Language
Reflect a range of features in a language-independent way. Represent source variables, temporaries, and registers. Appropriate for most of the optimizations done in compilers such as common-sub expression elimination, code motion, and algebraic simplification.
1. Three address code (x = y op z),
0. assignment statements x := y op z
0. assignment statements x := op y
0. copy x := y
0. unconditional jump go L
0. conditional jump if re loop go L
0. param x and call p, n for procedure calls and return y -- where y representing a return value is optional
0. indexed statements of the form x:= y[i], x[i] := y
0. address and pointer assignments of the form x := &y and x := *y
1. Low-Level Intermediate Languages
one--one correspondence target machine instructions, and are usually architecture dependent. Usually deviate only when there are alternatives for the most effective code generate for them. E.g., multiply instruction or more complex addressing modes.

UNIT IV

Activation records
1. Created every time a procedure is called
1. Must be accessible both the caller and the callee
1. Allocates space for
2. Parameters
2. Local variables
2. Return address
2. Other links and pointers provide access non-local data
1. Other issues
3. Initializing local variables
3. Stack vs. heap allocated
3. Optimizing activation records by coalescing

Symbol Table
1. keeps track of scope and other attributes of named program entities
1. key operations
1. void insert(symbol s);
1. symbol lookup(string name);
1. void enter_scope(void);
1. void exit_scope(void);
1. implementations
2. list
2. hash table
2. stack of tables
1. for some languages, the symbol table must handle overloading
3. each identifier contains a list of symbols
3. when entering new scope, chain symbols with same name in previous scope

UNIT V

Directed Acyclic Graph (DAG)– Directed acyclic graph DAG-
• Contraction of AST that avoids duplication- identical
sub trees are reused.
• exposes redundancies- changes (assignments, calls) ?
• smaller memory footprint
3. Example- a x (a-b) + c x (a-b)

[image:]

1. Code optimization together with code generation form the back end of the compiler. In compilers with a very extensive optimization, the optimization phase is distinguished as a middle end.
1. The goal of the compiler's optimizer is transform the IR program created by the front end in an IR program that computes the same results in a better way. Here "better" can take on many meanings. It usually implies faster code, but it might imply more compact code, less power when it runs or costs less run under some model.
1. Ideally, compilers should produce target code that is as good as can be written by hand. The reality is that this goal is achieved only in limited cases, and with difficulty. However, the code produced by straightforward compiling algorithms can often be made run faster or take less space, or both. This improvement is achieved by program transformations that are traditionally called optimizations, although the term "optimization" is a misnomer because is rarely a guarantee that the resulting code is the best possible. Most of the compilers involve some optimization. Compilers that apply code-improving transformations are called optimizing compilers.
1. Code generation is the final phase in compilation. It takes as input an intermediate representation of the source program and produces as output an equivalent target program. The code generation techniques can be used whether or not an optimization phase occurs before code generation.
1. The requirements traditionally imposed on a code generar are severe. The output code must be correct and of high quality, meaning that it should make effective use of the resources of the target machine. Moreover, the code generar itself should run efficiently.
1. Mathematically, the problem of generating optimal target code is (TM) undecidable!
1. In practice, we must be content with heuristic techniques that generate good, but not necessarily optimal, code. The choice of heuristics is important, because a carefully designed code generation algorithm can easily produce code that is several times faster that produced with ad hoc code generation techniques.
1. As code generation begins, the program exists in IR form. The code generar must convert the IR program (perhaps, already optimized) in code that can run on the target machine.
1. The code generation is performed typically as a sequence- instruction selection, instruction scheduling and register allocation-
8. Instruction selection - selecting a sequence of target-machine operations that implement the IR operations.
8. Instruction scheduling - choosing an order in which the operations should execute.
8. Register allocation - deciding which values should reside in registers at each point in the program
1. Most compilers handle each of these three processes separately. The term code generation is often used refer instruction selection only.
1. When the level of abstraction of the IR and the target machine differ significantly, or the underlying computation models differ, instruction selection can play a critical role in bridging the gap. The extent which instruction selection can map the computation in the IR program efficiently the target machine will often determine the efficiency of the generated code. For example, consider three scenarios for generating code from an IR-
10. A simple, scalar RISC machine - the mapping from IR assembly is straightforward. The code generar might consider only one or two assembly-language sequences for each IR operation.
10. A CISC processor - make effective use of a CISC's instruction set, the compiler may need aggregate several IR operations in a single target-machine operation.
10. A stack machine - the code generar must translate from the register--register computational style of IR a stack based style with its implicit names and, in some cases, destructive operations.
1. As the gap in abstraction between the IR and the target ISA grows, so does the need for ols help build code generars.
1. While instruction selection can play an important role in determining code quality, the compiler writer must keep in mind the enormous size of the search space that the instruction select might explore. As we shall see, even moderately sized instruction sets can produce search spaces that contain hundreds of millions of states. Clearly, the compiler cannot afford explore such spaces in either a careless or an exhaustive way.

image1.emf

