[bookmark: _GoBack]

Assignment I
For all program or data structure design problems such as the two below you must provide pseudocode (see the manual) and an adequate explanation of the methods. It is often helpful to include small examples demonstrating the methods. Straight pseudocode with no additional documentation is not enough. Your pseudo code can contain English if needed. Each problem should be answered on separate sheets of paper so they can be graded by different TAs. Your name should be at the top of every page.
1. (10 points) A recursive version of Insertionsort works as follows. We have a list to sort. If the list is empty then there is nothing to do. Otherwise, sort all but the first element of the list recursively, then insert the first element of the list into its proper place in the the list by comparing it to members of the returned list which is already sorted.
· Assume a node in the list has two fields: value which holds an integer, and next which is a pointer to a node. Design the recursive list version of Insertionsort(p : node pointer) : node pointer in pseudocode. Your function should be destructive.
· Analyze the worst case time of your algorithm. Because it is recursive your time bound should first be defined by a recurrence, then the recurrence should be solved.
2. (10 points) Design an array based data structure for two stacks called a DualStack The two stacks should share the same array in an efficient manner. If there are MaxSize entries in the array then the IsFull function should only return true is all the entries in the array are occupied. Your operations should all be constant time.
· Implement Push(S: DualStack pointer, i: integer, p : blob pointer) that pushes the blob pointed to by p onto the i-th stack in S (i = 0 or 1). Similarly, implement Pop, IsEmpty, IsFull.
· Explain why such a nice data structure would not be possible for 3 stacks.
3. 10 points) Consider the following general recurrence T(1) <= d and T(n) <= aT(n/b) + cn for a time bound. Show that:
· If a < b then T(n) = O(n).
· If a = b then T(n) = O(n log n).
· If a > b then T(n) = O(n^{log_b a}) (n to the power log base b of a).

You may assume that n is a power of b in your argument. A very good argument would determine the constants and low order terms hidden in the big O notation, and show the bound by induction on n.

Assignment II
For all program or data structure design problems such as the two below you must provide pseudocode (see the manual) and an adequate explanation of the methods. It is often helpful to include small examples demonstrating the methods. Straight pseudocode with no additional documentation is not enough. Your pseudocode can contain English if needed. Each problem should be answered on a separate sheets of paper so they can be graded by different TAs. Your name should be at the top of every page.
1. (10 points) It is often handy to store a binary tree in a file. Assume each node in the binary tree contains a character string. Assume also that all operations you need on strings are provided. For example, you do not need to design algorithms to test if a string equals ".", to write a string into a file, or to read a string from a file. To create the file in preorder file format do a preorder traversal of the tree, when a node is visited put the character string in the file followed by a newline and when a null is visited put a dot, ".", followed by a newline. For example, the tree

 a
 / \
 b c
 / / \
 d e f
is stored as the file "a b d . . . c e . . f . ." where spaces indicate newlines.
· Design an algorithm which outputs the preorder file format of a binary tree given a pointer to the root of a binary tree. Assume the binary tree has nodes with fields "data", "left_child", and "right_child".
· Design an algorithm which takes a preorder file format of a binary tree and produces the binary tree. Hint: an effective approach is to design a recursive function that processes a sequence of lines in a file and returns a binary tree.
2. (10 points) Using an in-order traversal it is quite easy to output all the data in a binary search tree in order. Design an algorithm which when given a binary search tree and two numbers x and y outputs all the data items z in order with the property that x <= z <= y. If the tree has height d then the total time to output should be O(d + k) where k is the number of data items output by the call. You should argue that your algorithm takes that much time. Hint on the analysis: the visited nodes are found to the right of one path in the tree and to the left of another.

Assignment III
For all program or data structure design problems such as the two below you must provide pseudocode (see the manual) and an adequate explanation of the methods. It is often helpful to include small examples demonstrating the methods. Straight pseudocode with no additional documentation is not enough. Your pseudocode can contain English if needed. Each problem should be answered on a separate sheets of paper so they can be graded by different TAs. Your name should be at the top of every page.
1. (10 points) The classic way to evaluate a polynomial is Horner's Rule. Horner's rule can be stated recursively as follows:

Let p(x) = a0 + a1*x + a2*x^2 + ... + ak*x^k be a polynomial. Note that * means "times"and ^ means "to the power". To evaluate the polynomial p(x) at c, first let r be the result of evaluating the polynomial a1 + a2*x + a3*x^2 + ... + ak*x^(k-1) at c, then evaluate the final result as a0 + c*r.
· Design recursive pseudocode function which more precisely defines Horner's Rule. Assume that the coefficients of the polynomial is stored in a linked list with a0 stored at the head of the list. Your function should have two arguments one for the number c and the other for the polynomial. The return value should be a number.
· Design an iterative algorithm (no recursion) and its pseudocode for Horner's Rule. Your iterative algorithm should be a simple for loop. In this case assume that the polynomial is stored in an array, not a linked list. The array value A[0] = a0, A[1] = a1, and so on.
2. (10 points) We would like to implement the abstract data type called "bag of blobs". A bag has a maximum size Msize and supports insert, delete, IsEmpty, IsFull, and perhaps other operations. Insert adds a new blob to the bag and Delete removes a blob from the bag. Assume blob is a record type. A bag of blobs can be implemented using an array A[1..Msize] of blob pointers. If there are k blobs in the bag then the entries A[1], ..., A[k] point to these blobs. The remaining entries of the array point to null.
· Describe algorithms to implement Insert(p : blob pointer) which adds the blob pointed to by p to the bag that is not full and to implement Delete(p: blob pointer) which removes the blob pointed to by p from the bag. Each blob in the bag should have an integer field that indicates where it is in the array A. Your description can be written in pseudo code with drawing to show how the code works. Your functions should each run in constant time.
· Distinguish the ADT bag from the ADT list.
3. (10 points) Consider the linked list representation of unbounded integers described in the lectures. Carefully design a recursive pseudocode function that adds two integers. The recursive function should follow the examples on slides 21-23 of the lecture titled "Lists". Your addition function should have two arguments which are node pointers, and return a node pointer.

