B.Tech 3rd Semester Exam., 2014

FLUID MECHANICS

Time: 3 hours akubihar.com Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are NINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Choose the correct answer (any seven): 2×7=14
 - (a) Falling drops of water become spherical due to
 - (i) adhesion
 - (ii) cohesion
 - (iii) viscosity

akubihar.com

- (iv) absorption
- (y) surface tension
- b) The coefficient of viscosity is a property of
 - (i) the fluid
 - (ii) the boundary condition
 - (iii) the body over which flow occurs
 - (iv) the flow velocity

(c) The continuity equation represents conservation of

2

₩ mass

- (ii) momentum
- (iii) energy
- (iv) vorticity
- (d) A streamline is a line
 - (i) connecting midpoints of a flow cross-section
 - (ii) connecting points of equal velocity in a flow field
 - (iii) tangent to which at any point gives the direction of velocity vector at that point
 - (iv) drawn normal to the velocity vector at any point
- (e) Navier-Stokes equations are associated with
 - (i) buoyancy

(ii) turbulence

akubihar.com

- (iii) viscosity >
- (iv) compressibility_
- (v) vorticity and circulation

AK15-2700/82 akubihar.com (Turn Over)

akubihar.com

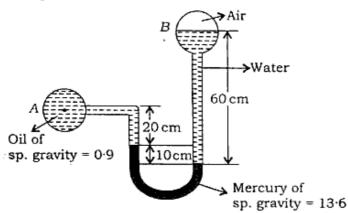
- The velocity distribution at any section of a pipe for steady laminar flow is
 - linear
 - (ii) exponential
 - (iii) parabolic
 - (iv) hyperbolic
- Which of the following has the form of Reynolds number?
- The square root of inertia force to gravity force is known as
 - pressure coefficient

(iii) Froude's number

- (iii) Weber number
- (iv) Mach number

- One atmospheric pressure equals
 - (i) 1.0132 kgf/cm²
 - (ii) 760 mm of mercury
 - (iii) 1·0135 N/m²
 - (iv) 10.3 mm of water
 - (D) Any of the above
- The range of coefficient of discharge for a venturimeter is
 - (i) 0.6-0.7
 - (ii) 0·7-0·85

akubihar.com


- (iii) 0.85-0.92
- (iv) 0.92-0.98
- Check whether the following functions represent possible flow phenomenon of irrotational type:
 - (i) $\phi = x^2 y^2 + y$
 - (ii) $\phi = \sin(x + y + z)$
 - (iii) $\phi = \frac{4x}{x^2 + u^2}$
 - Define surface tension. Prove that the relationship between surface tension and pressure inside a droplet of liquid in excess of outside pressure is given by

$$P = \frac{4\sigma}{d}$$
 6+8=14

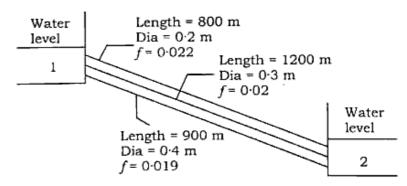
(Continued)

akubihar.com

- 3. (a) With neat sketches, explain conditions of equilibrium for floating and submerged bodies.
 - A differential manometer is connected at the two points A and B as shown in the figure below:

At B, air pressure is $9.81 \,\mathrm{N/cm^2}$ (absolute), find the absolute pressure at A. 6+8=14

- Derive Euler's equation of motion along a streamline and hence derive the Bernoulli's theorem.
 - A conical tube 1.5 m long is fixed vertically with its smaller end upwards and it forms a part of pipeline. Water flows down the tube and measurements indicate that velocity is 4.5 m/sec at the


smaller end, 1.5 m/sec at the larger end and the pressure head is 10 m of water at the upper end. Presuming that loss of head in the tube is expressed as

$$\frac{0.33(v_1-v_2)^2}{2g}$$

where v_1 and v_2 are the velocities at the upper and lower ends, make calculations for the pressure head at the lower end of the conical tube.

14

The details of a parallel-pipe system for (a) water flow are shown in the figure below:

akubihar.com

- If the frictional drop between the junctions is 15 m of water, determine the total flow rate.
- (ii) If the total flow rate is 0.66 m³/sec, determine the individual flow and the friction drop.

akubihar.com

Find the difference in drag force exerted on a flat plate of size 2 m × 2 m when the plate is moving at a speed of 4 m/sec normal to its plane in (i) water and (ii) air of density 1.24 kg/m^3 . Coefficient of drag is given as 1.15.

8+6=14

akubihar.com

Prove that the discharge through a triangular notch or weir is given by

$$Q = \frac{8}{15} C_d \tan(\theta/2) \sqrt{2g} H^{5/2}$$

- The head of water over a rectangular notch is 900 mm. The discharge is 300 litres/sec. Find the length of the notch, when $C_d = 0.62$. 8+6=14
- **7.** (a) Using Rayleigh's method, determine the rational formula for discharge Q through a sharp-edged orifice freely into the atmosphere in terms of constant head H, diameter d, mass density ρ , dynamic viscosity μ and acceleration due to gravity q.
 - Define the following:
 - (i) Laminar and turbulent flow
 - (ii) Rotational and irrotational flow
 - (iii) Uniform and non-uniform flow

8+6≤14

(Turn Over)

- Define the equation of continuity. Obtain an expression for continuity equation for a three-dimensional flow.
 - (i) What do you mean by equipotential (b) line and a line of constant stream function?
 - (ii) Describe the uses and limitations of the flow nets.

14

14

9. Write short notes on any three of the following:

> (a) Boundary layer separation and its control

Different types of fluid

Hydraulic Grade Line (HGL)

Pitot tube

Circulation and vorticity (e)

akubihar.com