B.Tech 3rd Semester Exam., 2017

FLUID MECHANICS

Time: 3 hours

Full Marks: 70

Turn Over

akubihar.com

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are **NINE** questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Ouestion No. 1 is compulsory.
- 1. Choose the correct answer (any seven): $2 \times 7 = 14$
 - The resultant hydrostatic force acts through a point is known as
 - (i) centre of gravity akubihar.com
 - (ii) centre of buoyancy
 - (jui) centre of pressure
 - (iv) None of the above
 - For a floating body, the buoyant force passes through the
 - (i) centre of gravity of the body
 - (iii) centre of gravity of the submerged part of the body
 - (iii) metacentre of the body
 - (iv) centroid of the liquid displaced by the body

(2)

akubihar.com

- The streamline is a line
 - (i) which is along the path of particle
 - (ii) which is always parallel to the main direction of flow
 - (iii) across which there is no flow
 - (iv) on which tangent drawn at any point gives the direction of the velocity akubihar.com
- An orifice is known as large orifice when the head of liquid from the centre of the orifice is
 - (i) more than the 10 times the depth of the orifice
 - (ii) less than 10 times depth of the orifice
 - (iii) less than 5 times depth of the orifice
 - (iv) None of the above

akubihar.com

- Bernoulli's theorem deals with the law of conservation of
 - mass
 - fii) momentum
 - (iii) energy
 - (iv) None of the above

akubihar.com

- (f) Irrotational flow means
 - (i) the fluid does not rotate while moving
 - (ii) the fluid moves in straight line
 - the net rotation of fluid particles about their mass centre is zero
 - (iv) None of the above

akubihar.com

(g) The coefficient of friction of laminar flow through a circular pipe is given by

(i)
$$f = \frac{0.0791}{(R_e)^{1/4}}$$

(ii)
$$f = \frac{16}{R_e}$$

(iii)
$$f = \frac{64}{R_e}$$

- (iv) None of the above
- (h) Models are known undistorted model, if
 - the prototype and model are having different scale ratios
 - (ii) the prototype and model are having same scale ratios
 - (iii) model and prototype are kinematically similar
 - (iv) None of the above

akubihar.com

(Turn Over)

akubihar.com

- (i) The geometric similarity between model and prototype means
 - (i) the similarity discharge
 - (ii) the similarity of linear dimensions
 - (iii) the similarity of motion
 - (iv) the similarity of forces
- (j) Poise is the unit of
 - (i) mass density
 - (ii) kinematic viscosity
 - (iii) viscosity
 - (iv) velocity gradient
- 2. (a) Define the terms 'buoyancy' and 'centre of buoyancy'. Derive an expression for the metacentric height of a floating body. akubihar.com
 - (b) Find the volume of the water displaced and position of centre of buoyancy for a wooden block of width 2.5 m and of depth 1.5 m when it floats horizontally in water. The density of wooden block is 650 kg/m³ and its length is 6.0 m.
- 3 (a) The velocity components for a steady flow are given as u = 0, $v = -y^3 4z$, $w = 3y^2z$. Determine (i) whether the flow field is one-, two- or three-dimensional, (ii) whether the flow is compressible and (iii) the stream function for the flow.

8AK/21

akubihar.com

....

9

5

VD

akubihar.com

(b) Show that the equation of continuity reduces to Laplace's equation when the liquid is incompressible and irrotational.

7

7

(Turn Over)

- (a) A plate, 0.025 mm distance from a fixed plate, moves at 60 cm/s and requires a force of 2 newton per unit area, i.e., 2 N/m² to maintain this speed. Determine the fluid viscosity between the plates. akubihar.com
 - (b) A pipe branches into two pipes as shown in Fig. 1 below:

Fig.1

The pipe has diameter of 55 cm at A, 25 cm at B, 28 cm at C and 17 cm at D. If the velocity at A and C be 2 m/sec and 4 m/sec respectively, then find the total quantity of liquid at A and velocities at B and D.

5. (a) State Bernoulli's theorem for steady flow of an incompressible fluid. Derive an expression for Bernoulli's equation from first principle and state the assumption made for such a derivation.

akubihar.com

akubihar.com

- (b) Water is flowing through a pipe of 5 cm diameter under a pressure of 29.43 N/cm² (gauge) and with mean velocity of 2.0 m/s. Find the total head or total energy per unit weight of the water at cross section, which is 5 m above the datum line. akubihar.com
- (a) Discuss the relative merits and demerits of venturimeter with respect to orificemeter.
 - (b) What is a pitot tube? How will you determine the velocity at any point with the help of pitot tube?
- 7. (a) Discuss the Hardy cross method for pipe network. akubihar.com
 - (b) Calculate the discharge in each pipe of the network shown in the Fig. 2 given below. The pipe network consists of 5 pipes. The head loss h_f in pipe is given by h_f = rQ². The values of r for various pipes and also the inflow or outflows at nodes are shown in the Fig. 2 below:

Fig. 2

7

7

7

7

akubihar.com

- 8. (a) Define laminar flow. Discuss generalized plane Couette flow between parallel plates. Determine the volumetric flow rate, shear stress and coefficient of friction.
 - (b) Oil flows between two parallel plates, one of which is at rest and the other moves with a velocity U. If the pressure is decreasing in the direction of the flow at a rate of 0·10 lbf/ft³, the dynamic viscosity is 10⁻³ lbf-sec/ft², the spacing of the plates is 2 inches and volumetric flow Q per unit width is 0·15 ft²/sec, what is the value of U?
- (a) Discuss types of similarity and explain each of them.
 - (b) Using Buckingham's π theorem, show that the frictional torque T of a disk of diameter D rotating at a speed N in a fluid of viscosity μ, density ρ in a turbulent flow is given by

$$T = D^5 N^2 \rho \phi \left(\frac{\mu}{D^2 N \rho} \right)$$

akubihar.com

akubihar.com

Code: 011307

7

7

7