Muzaffarpur Institute of Technology Muzaffarpur

B.Tech $4^{\text {th }}$ Semester Mid-Term Examination, 2018

Hydraulics and Open Channel Flow

Time: 2 hours
Full Marks: 20

Instructions:

(i) All questions carry equal marks.
(ii) There are Six questions in this paper.
(iii) Attempt Four questions in all.
(iv) Question No. 1 is compulsory.

1. Chose the correct option of the following (any five)
(a) If the Reynold's number is more than 5×10^{5}, the boundary layer is called
(i) Laminar boundary layer
(ii) Turbulent boundary layer
(iii) Either of the above
(iv) None of the above
(b) In the uniform flow in a channel of small bed slope, the hydraulic grade line
(i) Coincides with the bed
(ii) Is considerably below the free surface
(iii) Is considerably above the free surface
(iv) Coincides with the free surface
(c) If the bed particle size D_{50} of a natural stream is 2.0 mm , then by Strickler`s formula, the manning`s n for the channel is about
(i) 0.013
(ii) 0.017
(iii) 0.023
(iv) 0.044
(d) Which one of the following has dimensions:
(i) Reynold`s Number (ii) Froude Number (iii) Chezy`s Constant
(iv) None of these
(e) In uniform flow there is a balance between
(i) Gravity and Inertial forces
(ii) Gravity and Frictional forces
(iii) Inertial and Viscous forces
(iv) Inertial and Frictional forces
(f) At critical depth
(i) The discharge is minimum for a given specific energy
(ii) The discharge is minimum for a given specific force
(iii) The discharge is maximum for a given specific energy
(iv) The discharge is maximum for a given specific force
(g) A triangular section is hydraulically-efficient when the vertex angle is
(v) 30^{0}
(vi) 60^{0}
(vii) 90°
(viii) 120°
2. (a) Define Uniform flow. Write the features of Uniform flow.
(b) Find the discharge in the following channels with a bed slope of 0.0006 and $n=0.016$:
(i) Rectangular, $\mathrm{B}=2.0 \mathrm{~m}$ and $\mathrm{y}_{0}=1.20 \mathrm{~m}$
(ii) Trapezoidal, $\mathrm{B}=2.0 \mathrm{~m}, \mathrm{~m}=1.5$ and $\mathrm{y}_{0}=1.10 \mathrm{~m}$
(iii)Triangular, $\mathrm{m}=1.5$ and $\mathrm{y}_{0}=2.50 \mathrm{~m}$,
3. (a) Define hydraulically efficient section. How efficient section is also economical?
(b) It is required to convey 10 cumecs of water at a mean velocity of $1.25 \mathrm{~m} / \mathrm{s}$. Calculate the dimensions of the most efficient section of the channel whose shape is:
(i) Rectangular
(ii) Trapezoidal
(iii) Triangular
4. Derive the expressions of geometric parameters for the most economical
(a) Trapezoidal channel
(b) Rectangular channel sections, with the help of a neat sketch.
5. (a) Define Specific energy.
(b) Calculate the critical depth and the corresponding specific energy for a discharge of $5.0 \mathrm{~m}^{3} / \mathrm{s}$ in the following channels:
(i) Rectangular channel, $\mathrm{B}=2.0 \mathrm{~m}$
(ii) Triangular channel, $\mathrm{m}=0.5$
6. The velocity distribution in the boundary layer is given by $u / U=(y / \delta)^{1 / 7}$. Calculate:
(a) Displacement Thickness
(b) Momentum thickness
