# MUZAFFARPUR INSTITUTE OF TECHNOLOGY (MIT), MUZAFFARPUR



**COURSE FILE** 

OF

# High Voltage Engg.

Course Code

031x07

Faculty Name: Mr. R.K.M

ASSISTANT PROFESSOR

# DEPARTMENT OF ELECTRICAL ENGINEERIN



विज्ञान एवं प्रावैधिकी विभाग Department of Science and Technology

Government of Bihar

Course file (HVE)

Page 1

#### S.NO. Page No. Content 1 Cover page and content 1 4 2 Vision of the department 4 Mission of the department 3 5 PEO's and PO's 4 7 5 Course objectives and course outcomes (CO) 7 Mapping of CO's with PO's 6 8 7 Course syllabus and GATE syllabus 11 Time table 8 12 9 Student list 14 Course handout 10 16 Lecture plan 11 17 12 Assignment sheets 18 Tutorial sheets 13 19 14 Sessional question papers 20 University question papers 15 23 16 Question bank 23 17 Power point presentation

### TABLE OF CONTENT

| 18 | Lecture notes                                                                                                                     | 24 |  |
|----|-----------------------------------------------------------------------------------------------------------------------------------|----|--|
| 19 | Reference materials                                                                                                               |    |  |
| 20 | Results                                                                                                                           | 46 |  |
| 21 | Result analysis                                                                                                                   | 47 |  |
| 22 | <ul> <li>Quality measurement sheets</li> <li>Course end survey</li> <li>Teaching evaluation (for item no. 12 &amp; 13)</li> </ul> |    |  |

Govt. of Bihar



### MUZAFFARPUR INSTITUTE OF TECHNOLOGY, MUZAFFARPUR-842003

(Under the Department of Science & Technology Govt. of Bihar, Patna)

#### VISION STATEMENT OF ELECTRICAL ENGINEERING DEPARTMENT

To produce cutting edge Electrical Engineers, innovators, researchers, and entrepreneurs with high human values to serve society, industry, nation and the world.

#### MISSION STATEMENT OF ELECTRICAL ENGINEERING DEPARTMENT

- M1. To create state-of-the-art facilities for under-graduate, post- graduate and R&D work.
- M2. To cater the needs of society with recent technologies, innovative ideas and inculcate ethical responsibilities.
- M3. To develop strong collaborative links with premier industries, institutions and the government agencies.

Govt. of Bihar



### MUZAFFARPUR INSTITUTE OF TECHNOLOGY, MUZAFFARPUR-842003

(Under the Department of Science & Technology Govt. of Bihar, Patna)

#### **Program Educational Objectives (PEOs) of Electrical Engineering Department:**

- **PEO 1.** Students will be able to engage in life-long learning and research including supportive and responsible roles on multi-disciplinary tasks.
- **PEO 2.** Students will acquire, use and develop skills as required for effective professional and societal practices and leadership quality.
- **PEO 3.** Students will be able to create a new dimension of innovation and entrepreneurship.

**Program Outcomes (POs)** based on Program Educational Objectives (PEOs) of Electrical Engineering Department:

- **PO 1.** Students will be able to apply knowledge of applied mathematics & science in electrical engineering problems.
- **PO 2.** Students will be able to identify, formulate and solve society and industries related problems.
- **PO 3.** Students will be able to apply knowledge to design a system, component or process to meet desired needs within realistic constraints.
- **PO 4.** Students will be able to conduct laboratory experiments and to critically analyze and interpret experimental data.
- **PO 5.** Students will be able to use the recent techniques, skills, and modern tools necessary for engineering practices.
- **PO 6.** Students will be able to understand the impact of engineering problems, solutions in a global and societal context.
- **PO 7.** Students will be able to demonstrate professional and ethical responsibilities.
- **PO 8.** Students will be able to apply leadership quality to work with team in the area of electrical engineering towards the solution of multi-disciplinary tasks.
- **PO 9.** Students will be able to communicate effectively through verbally, technical writing, reports and presentation.
- **PO 10.** Students will be able to develop confidence for self-education and ability to engage in life-long learning.

## **Course objectives and course outcomes (CO)**

#### **Course objestives:**

This course is designed to review the fundamentals and practices of insulating materials and their applications in electrical and electronics engineering, breakdown phenomenon in insulating material (solid, liquid, and gases), generation and measurement of high D.C., A.C. and impulse voltages and currents, overvoltage phenomenon in electrical power system and insulation coordination, high voltage testing techniques. The course outcomes are:

- CO-1 Design and development of high voltage equipments and utility establishment.
- **CO-2** Analyze and measure the magnitude of HVDC, HVAC (power frequency & high frequency) and impulse by different measurement schemes.
- **CO-3** Conduct high voltage test of materials and apparatus
- CO-4 Evaluate the form of discharges in Gaseous, Liquid and Solid dielectrics.

| Mapping of CO's with P | <b>O's</b> |
|------------------------|------------|
|------------------------|------------|

|      | <b>PO 1</b> | <b>PO 2</b> | <b>PO 3</b> | <b>PO 4</b> | <b>PO 5</b> | <b>PO 6</b> | <b>PO 7</b> | <b>PO 8</b> | <b>PO 9</b> | PO 10 | PO 11 | PO 12 |
|------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------|-------|-------|
| CO 1 | 3           | 2           | 3           | 3           | 3           | 1           | 2           | 2           | 3           | 1     | 2     | 1     |
| CO 2 | 3           | 2           | 3           | 3           | 3           | -           | 2           | -           | 2           | -     | 2     | -     |
| CO 3 | 3           | 3           | 3           | 3           | 3           | 2           | 1           | 1           | 2           | -     | 2     | -     |
| CO 4 | 3           | 2           | 3           | 3           | 3           | 1           | 1           | -           | 1           | -     | 1     | -     |

# **Course syllabus and GATE syllabus**

#### COURSE SYLLABUS

- 1. Generation of high voltages and current, AC voltage: cascade transformers-series response circuits DC voltages, voltage doubler cascade circuit electrostatic machines, impulse voltage: single stage and multistage circuits wave shaping tripping and control of impulse generators generation of switching surge voltage and impulse currents.
- 2. Measurement of high voltage and current: DC, AC and impulse voltages and currents DSO electrostatic and peak voltmeters sphere, gaps-factors affecting measurements potential divider (capacitance and resistive) series impedance ammeters Rogowski coils-Hall effect generators.
- **3.** High voltage testing of materials and apparatus: Preventative and diagnostic tests-dielectric loss measurement-Schering bridge-inductively coupled ratio arm bridge-partial discharge and radio interference measurement-testing of circuit breakers and surge diverting.
- **4.** Insulation materials and system: Insulation system in practice, dielectric losses, ageing and life expectancy.
- 5. Outdoor insulation: materials, ageing, diagnostic, polymeric materials (EPDM, SIR), semi conducting ceramic, glazes.
- 6. Breakdown in gas and gas mixtures-breakdown in uniform, in non-uniform field-Paschens law-Townsends criterion-streamer mechanism-corona discharge-breakdown in elector negative gases.
- 7. Breakdown in liquid dielectrics-suspended particle mechanism.
- 8. Breakdown in solid dielectrics-intrinsic, streamer, thermal breakdown

# Student list

| SL. NO. | ROLL NO. | AKU REG. NO. | NAME                    |
|---------|----------|--------------|-------------------------|
| 1       | 15E56    | 15103107055  | KRISHNA KUMAR           |
| 2       | 15E25    | 15103107126  | SUJEET KUMAR            |
| 3       | 15E35    | 15103107127  | HAPPY KUMAR             |
| 4       | 15E45    | 15103107128  | MAYANK KASHYAP          |
| 5       | 15E01    | 15103107129  | PRASOON BALA            |
| 6       | 15E02    | 15103107130  | SUMI SINGH              |
| 7       | 15E03    | 15103107131  | SURYA NARAYAN SINGH     |
| 8       | 15E07    | 15103107132  | VIVEK KUMAR             |
| 9       | 15E09    | 15103107133  | ANKITA KUMARI SINDURIYA |
| 10      | 15E10    | 15103107134  | NIRAJ KUMAR             |
| 11      | 15E11    | 15103107135  | SANDEEP KUMAR SITESH    |
| 12      | 15E12    | 15103107136  | NISHANT GUPTA           |
| 13      | 15E13    | 15103107137  | PRAKASH KUMAR           |
| 14      | 15E14    | 15103107138  | PRADEEP KUMAR           |
| 15      | 15E15    | 15103107139  | RAVI RANJAN             |
| 16      | 15E16    | 15103107140  | RAVI SHANKAR SAH        |
| 17      | 15E17    | 15103107141  | ALOK KUMAR              |
| 18      | 15E18    | 15103107142  | RAVI KANT SINGH         |
| 19      | 15E23    | 15103107143  | NAYAN PRIYA             |
| 20      | 15E26    | 15103107144  | ATUL SHAKTI             |
| 21      | 15E27    | 15103107145  | RAHUL KUMAR             |
| 22      | 15E28    | 15103107146  | ABHISHEK KISHORE        |
| 23      | 15E29    | 15103107147  | RUHI KUMARI             |
| 24      | 15E30    | 15103107148  | RAJEEV KUMAR CHOUDHARY  |
| 25      | 15E32    | 15103107149  | KISHAN KUMAR            |
| 26      | 15E33    | 15103107150  | MANISH KUMAR            |
| 27      | 15E34    | 15103107151  | AMIT KUMAR              |
| 28      | 15E36    | 15103107152  | RAVI RANJAN             |
| 29      | 15E37    | 15103107153  | SHASHANK SUDHANSHU      |

| 30 | 15E38     | 15103107154 | NEHA GUPTA             |  |
|----|-----------|-------------|------------------------|--|
| 31 | 15E39     | 15103107155 | SWETA JAMUAR           |  |
| 32 | 15E40     | 15103107156 | SURUCHI KUMARI         |  |
| 33 | 15E42     | 15103107157 | TAHA ALAM              |  |
| 34 | 15E44     | 15103107159 | NIKET NIRAJ            |  |
| 35 | 15E47     | 15103107160 | ASHUTOSH SHIVAM JHA    |  |
| 36 | 15E49     | 15103107161 | MEDHA CHAUDHARY        |  |
| 37 | 15E41     | 15103107162 | SOURAV SRIKANT         |  |
| 38 | 15E51     | 15103107163 | PRIYANKA SUMAN         |  |
| 39 | 15E52     | 15103107164 | PALLAVI KUMARI         |  |
| 40 | 15E54     | 15103107165 | SHASHI RANJAN          |  |
| 41 | 15E57     | 15103107166 | RAJLAXMI KUMARI        |  |
| 42 | 15E59     | 15103107168 | AJIT KUMAR             |  |
| 43 | 15E61     | 15103107170 | NAYAN KUMAR NAYAN      |  |
| 44 | 15E63     | 15103107171 | RAJU KUMAR             |  |
| 45 | 15E64     | 15103107172 | PREM NARAYAN CHAUDHARY |  |
| 46 | 15E31     | 15103107173 | SAURAV KUMAR           |  |
| 47 | 15E04     | 15103107174 | BINDIA RANI            |  |
| 48 | 15E06     | 15103107176 | MADHU KUMARI           |  |
| 49 | 15E08     | 15103107177 | KAJAL RAJ              |  |
| 50 | 15E19     | 15103107178 | OM PRAKASH CHAUDHARY   |  |
| 51 | 15E20     | 15103107179 | AMAN KUMAR             |  |
| 52 | 15E24     | 15103107180 | JYOTI KUMARI           |  |
| 53 | 15E21     | 15103107181 | MD SARFARAJ AHMAD      |  |
| 54 | 15E46     | 15103107182 | SATISH KUMAR           |  |
| 55 | 15E48     | 15103107183 | PAVAN KUMAR            |  |
| 56 | 15E55     | 15103107184 | DEO                    |  |
| 57 | 15E62     | 15103107185 | SUDEEP KUMAR           |  |
| 58 | 15E50     | 15103107186 | NAGESHWAR SHARMA       |  |
| 59 | 15E22     | 15103107278 | AZIM ANSARI            |  |
| 60 | 15E65     | 15104107203 | PRIYANKA KUMARI        |  |
| 61 | 15E66     | 15106107258 | DEEPAK KUMAR SINGH     |  |
| 62 | 16(LE)E10 | 16103107901 | GAUTAM BHARTI          |  |
| 63 | 16(LE)E06 | 16103107902 | SHEKHAR KUMAR          |  |
| 64 | 16(LE)E01 | 16103107903 | SHAFAQUE NAZREEN       |  |

| 65 | 16(LE)E07 | 16103107904 | MD MOIN         |
|----|-----------|-------------|-----------------|
| 66 | 16(LE)E03 | 16103107905 | PRIYANKA KUMARI |
| 67 | 16(LE)E02 | 16103107906 | PAVAN KUMAR     |
| 68 | 16(LE)E04 | 16103107908 | ROHAN RAJ       |
| 69 | 16(LE)E09 | 16103107909 | PINTU KUMAR     |

# **Course handout**

| Lecture<br>Number | Topics                        | Web Links for video<br>lectures    | Text Book /<br>Reference            | Page numbers of Text Book(s) |
|-------------------|-------------------------------|------------------------------------|-------------------------------------|------------------------------|
|                   |                               |                                    | Book / Other<br>reading<br>material |                              |
|                   | Generation of high voltage    |                                    |                                     | 142                          |
| 1.0               | & Currents                    |                                    |                                     | 140.170                      |
| 1-2               | Introduction to HV,           |                                    |                                     | 142-162                      |
|                   | of high voltage & current     |                                    |                                     |                              |
| 3-4               | Cascade transformers-series   |                                    |                                     | 162-168                      |
| -                 | response circuits DC          |                                    | TB1                                 |                              |
| 5-6               | Voltage doubler cascade       |                                    |                                     | 144-146                      |
|                   | circuit electrostatic machine |                                    | -                                   |                              |
| 7-8               |                               | https://www.sciencedi              |                                     | 171-175                      |
|                   | Impulse volteges single store | rect.com/science/articl            |                                     |                              |
|                   | and multistage circuits       | <u>e/pii/S001000521590</u><br>0//2 |                                     |                              |
| 9-10              | Generation of switching       | 0442                               | -                                   | 314-326                      |
|                   | surge voltage and impulse     |                                    |                                     |                              |
|                   | currents, Wave shaping        |                                    |                                     |                              |
|                   | tripping and control of       |                                    |                                     |                              |
|                   | impulse                       |                                    |                                     | 207                          |
|                   | Measurement of high           |                                    |                                     | 205                          |
| 11                | Measurement of high voltage   |                                    | -                                   | 205-206                      |
| 11                | and current                   |                                    | TB1                                 | 200 200                      |
| 12-13             | DC, AC and impulse            |                                    |                                     | 207-212                      |
|                   | voltages and currents - DSO   |                                    |                                     |                              |
|                   | – electrostatic & peak        |                                    |                                     |                              |
| 14.15             | voltmeter gang factors        |                                    |                                     | 227.234                      |
| 14-13             | affecting measurements        |                                    |                                     | 227-234                      |
| 16-17             | Potential divider             |                                    |                                     | 238-250                      |
|                   | (capacitance and resistive)-  |                                    |                                     |                              |
|                   | series impedance ammeters     |                                    | TR1 DR1                             |                              |
|                   | materials and apparatus       |                                    | 1D1, KD1                            |                              |
| 18                | Preventative and diagnostic   |                                    |                                     | 357-358                      |
|                   | tests-dielectric loss         |                                    |                                     |                              |
| 19-20             | measurement-Schering          |                                    |                                     | 364-370                      |
|                   | bridge-inductively coupled    |                                    |                                     |                              |
|                   | discharge and radio           |                                    | TB1                                 |                              |
|                   | interference                  |                                    | 101                                 |                              |
| 21-22             | Measurement-testing of        |                                    |                                     | 402-406,416-420              |
|                   | circuit breakers and surge    |                                    |                                     |                              |
|                   | diverting.                    |                                    |                                     |                              |
|                   | Insulation materials          |                                    | TB1, RB1                            |                              |
|                   | and system                    |                                    |                                     |                              |
| 23-24             | Insulation system in          |                                    | TB1                                 | 125-140                      |
|                   | practice, dielectric losses,  |                                    |                                     |                              |
|                   | Outdoor insulation            |                                    | RB1                                 |                              |
| 25-28             | Breakdown in gas and gas      |                                    | https://www.soio                    |                              |
| 25-20             | mixtures. nolvmetric          |                                    | ncedirect.com/sc                    |                              |
| L                 | porymetric                    | 1                                  | <u>meenicetteonij be</u>            | 1                            |

|       | materials, semiconducting    | ience/article/pii/ |        |
|-------|------------------------------|--------------------|--------|
|       | ceremicgazes                 | S001600321390      |        |
|       |                              | <u>0442</u>        |        |
|       | Breakdown in gas and         | TB1, TB2, RB3      |        |
|       | gas mixtures                 |                    |        |
| 29-32 | Breakdown in uniform, in     | TB1                | 27-49  |
|       | non-uniform field-Paschens   |                    |        |
|       | law, Townsends criterion-    |                    |        |
|       | streamer mechanism, Corona   |                    |        |
|       | discharge-breakdown in       |                    |        |
|       | elector negative gases       |                    |        |
|       | Breakdown in liquid          | TB1                |        |
|       | dielectrics                  |                    |        |
| 33-34 | Suspended particle           | TB1                | 69-78  |
|       | mechanism                    |                    |        |
|       | Breakdown in solid           | TB1, RB3           |        |
|       | dielectrics                  |                    |        |
| 35-36 | intrinsic, streamer, thermal | TB1                | 87-102 |
|       | breakdown                    |                    |        |

# Lecture plan

| Sl. No. |                                   | Topic Name                                                                                                      | Periods |
|---------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------|---------|
| 1       | Generation of high                | voltage & Currents                                                                                              |         |
|         | 1.1                               | Introduction to HV, Classifications                                                                             | 1       |
|         | 1.2                               | Generation of high voltage & Currents                                                                           | 2       |
|         | 1.3                               | Cascade transformers-series response circuits DC                                                                | 1       |
|         | 1.4                               | Voltage doubler cascade circuit electrostatic machine                                                           | 2       |
|         | 1.5                               | Impulse voltage: single stage and multistage circuits                                                           | 2       |
|         | 1.6                               | Generation of switching surge voltage and impulse currents                                                      | 1       |
|         | 1.7                               | Wave shaping tripping and control of impulse                                                                    | 1       |
| 2       | Measurement of hi                 | gh voltage & current                                                                                            |         |
|         | 2.1                               | Measurement of high voltage and currant                                                                         | 1       |
|         | 2.2                               | DC, AC and impulse voltages and currents – DSO –                                                                | 2       |
|         |                                   | electrostatic & peak voltmeter                                                                                  |         |
|         | 2.3                               | Sphere, gaps-factors affecting measurements                                                                     | 2       |
|         | 2.4                               | Potential divider ( capacitance and resistive ) - series impedance ammeters                                     | 2       |
| 3       | High voltage testing              | ng of materials and apparatus                                                                                   |         |
|         | 3.1                               | Preventative and diagnostic tests-dielectric loss                                                               | 1       |
|         | 3.2                               | measurement-Schering bridge-inductively coupled<br>ratio arm bridge-partial discharge and radio<br>interference | 2       |
|         | 3.3                               | Measurement-testing of circuit breakers and surge diverting.                                                    | 2       |
|         | 3.4                               | Potential divider ( capacitance and resistive ) - series impedance ammeters                                     | 2       |
| 4       | Insulation material               | s and system                                                                                                    |         |
|         | 4.1                               | Insulation system in practice, dielectric losses, ageing and life expectancy.                                   | 2       |
| 5       | Outdoor insulation                | 1                                                                                                               |         |
|         | 5.1                               | Breakdown in gas and gas mixtures                                                                               | 2       |
|         | 5.2                               | polymeric materials ( EPDM,SIR ),                                                                               | 1       |
|         | 5.3                               | semi conducting, ceramic, glazes.                                                                               | 1       |
| 6       | Breakdown in gas and gas mixtures |                                                                                                                 | -       |
|         | 6.1                               | Breakdown in uniform, in non-uniform field-<br>Paschens law                                                     | 2       |
|         | 6.2                               | Townsends criterion-streamer mechanism                                                                          | 1       |
|         | 6.3                               | Corona discharge-breakdown in elector negative gases                                                            | 1       |
| 7       | Breakdown in liqui                | d dielectrics                                                                                                   |         |
|         | 7.1                               | suspended particle mechanism                                                                                    | 2       |
| 8       | Breakdown in solid                | dielectrics                                                                                                     |         |

| 8.1 | Intrinsic, streamer, thermal breakdown. | 3  |
|-----|-----------------------------------------|----|
|     | TOTAL                                   | 39 |

### **Assignment sheets**

#### <u>Assignment I</u>

**Q.1-** An impulse generator has 12 capacitors of 0.12 micro farad and 200 KV rating. The wave front and wave tail resistances are 1.25 K Ohm and 4 K Ohm respectively. If the load capacitance including that of the test object is 10000pico farad, find the wave tail times and peak voltage of impulse voltage produced.

**Q.2-** A voltage doubler circuit has C1=C2=0.01 micro farad and is supplied from a voltage source of V= 100Sin314t KV. If the DC output current is to be 4 mA, calculate the output voltage and ripple.

**Q.3-** Explain the method of controlled tripping of impulse generators. Why is controlled tripping necessary?

**Q.4-** What is the trigatron gap? Explain its function and operation.

#### Assignment II

**Q.1-** Discuss the different methods of measuring high DC voltages. What are the limitations in each method?

**Q.2-** A bifilar strip shunt has a resistance of 100mili ohm and inductance of 0.1micro henry with a parallel capacitance of 5pf across its terminal. What will be its step response? Determine the rise time of the shunt.

**Q.3-** What is capacitance voltage transformer? Explain with a phasor diagram how a tuned capacitive voltage transformer can be used for voltage measurement in power system.

**Q.4-** Compare the use of uniform field electrode spark gap and sphere gap for measuring peak values of voltages.

#### **Assignment III**

**Q.1-** What are the different power frequency tests done on insulators? Mention the procedure for testing?

**Q.2-** What is the significance of impulse tests? Briefly explain the impulse testing of insulators.

**Q.3-** Explain the partial discharge tests on high voltage cables. How is a fault in the insulation located in this test?

**Q.4-** What is an operating duty cycle test on a surge arrestor? Why is it more significant than other tests?

#### **Assignment IV**

**Q.1-** Give the temperature classification for solid insulating materials. Why is this classification not done for liquids and gases?

**Q.2-** How the transformer insulation divided? Briefly indicate the insulation arrangement indicating insulating materials chosen?

**Q.3-** Give the application of gases and gas mixtures as insulating medium in high voltage switchgear and high voltage power cables.

**Q.4-** How is the insulation arrangement done for different parts of switchgear?

#### Assignment V

**Q.1-** Explain the phenomenon of electrical conduction in liquids. How does it differ from pure liquid dielectrics?

**Q.2-** What are the commercial liquid dielectrics and how are they different from pure liquid dielectrics?

Q.3- Explain the various theories that explain breakdown in commercial liquid dielectrics?

**Q.4-** What is "stressed oil volume theory", how does it explain breakdown in large volumes of commercial liquid dielectrics?

# **Tutorial sheets**

#### Tutorial 1

**Q.1-** Calculate the peak current and wave shape of a output current of the following generator. Total capacitance of the generator is 53micro farad. The charging voltage is 200KV. The circuit inductance is 1.47mili henry and the dynamic resistance of the test object is 0.051 ohms.

**Q.2-** What are the requirements of an oscillograph for impulse and high frequency measurement in high voltage test circuits?

**Q.3-** Explain the importance of RIV measurement for EHV power apparatus.

#### Tutorial 2

**Q.1-** What are the electronegative gases? Why is the breakdown strength higher in these gases compared to that in other gases?

**Q.2-** Explain the difference between photoionization and photo-electric emission.

**Q.3-** Derive the criterion for breakdown in electronegative gases.

#### Tutorial 3

Q.1- Describe the current growth phenomenon in a gas subjected to uniform electric fields.Q.2- Define Townsend's first and second ionization coefficient. How is the condition for breakdown obtained in a Townsend gases discharge?

### Sessional question papers

#### Mid-Term Exam 2017-18 Semester: 8th

**Duration: 2 Hrs** 

Max. Marks: 40

Subject Name: High Voltage Engineering Part-I Subject Code:031X36

A. All questions are compulsory (2X5=10 marks)

**1.** Which among the following is the Average Electrical field magnitude of electric field:

(a) At midpoint between conductors

(b) Ratio of potential difference to the distance between the conductors.

c) At surface of the lower potential

2. Write the name of five gaseous dielectrics with their breakdown strength.

**3.**Write the name of five solid dielectrics with their breakdown strength.

**4.**Write the ratings of various voltage levels used in India.

5. What is the application of impulse overvoltage?

#### Part-II

#### **B.** Attempt the following questions (3x10=30 marks)

**1.** (a) Define Townsend's first and second ionization coefficients. How is the condition for breakdown obtained in a Townsend discharge? (10)

#### (*or*)

(b) What is Vacuum? Discuss the various mechanisms of Vacuum breakdown. (10)

**2. (a)** Explain the phenomenon of electrical conduction in liquids. How does it differ from that in gas? (10)

(or)

(b) What is 'stressed oil volume theory', how does it explain breakdown in large volume of commercial liquid dielectrics. (10)

**3. (a)** What do you understand by intrinsic strength of a solid dielectric? How does breakdown occur due to electron in a solid dielectric (10)

(or)

(b) What are the various methods of generating high voltage AC at power frequency explain any one in detail. (10)

# University question papers

|                                              | C                                    | ode : 031836         |  |  |  |  |  |
|----------------------------------------------|--------------------------------------|----------------------|--|--|--|--|--|
| B.Tech. 8th Semester                         | r Exam., 2                           | 017                  |  |  |  |  |  |
| High Voltage En                              | gineering                            |                      |  |  |  |  |  |
| Time : 3 hours Full Marks : 70               |                                      |                      |  |  |  |  |  |
| Instructions :                               |                                      |                      |  |  |  |  |  |
| (i) The marks are indicated                  | in the rig                           | ht-hand margin.      |  |  |  |  |  |
| (ii) There are Nine questions in this paper. |                                      |                      |  |  |  |  |  |
| (iii) Attempt Five questions                 | (iii) Attempt Five questions in all. |                      |  |  |  |  |  |
| (iv) Questions No. 1 is comp                 | ulsory.                              |                      |  |  |  |  |  |
| 1. Choose the correct option (any            | seven)                               | 2×7=14               |  |  |  |  |  |
| (a) Dielectric strength in case of           | of mica can                          | be expected to be    |  |  |  |  |  |
| more than                                    |                                      |                      |  |  |  |  |  |
| <ol> <li>500 kV/mm</li> </ol>                | (ii)                                 | 1500 kV/mm           |  |  |  |  |  |
| (iii) 2500 kV/mm                             | (iv)                                 | 3500 kV/mm           |  |  |  |  |  |
| (b) All of the following dielect             | ric materia                          | ls are preferred for |  |  |  |  |  |
| high frequency applications                  | EXCEPT.                              |                      |  |  |  |  |  |
| <ol> <li>Polyethylene</li> </ol>             | (ii)                                 | Butyl rubber         |  |  |  |  |  |
| (iii) Teflon                                 | (iv)                                 | Polystyrene          |  |  |  |  |  |
| (c) Which of the following tech              | hnique/me                            | thod is used for the |  |  |  |  |  |
| measurements of ac high fr                   | equency vo                           | oltages?             |  |  |  |  |  |
| <ol> <li>Peak voltmeter</li> </ol>           |                                      |                      |  |  |  |  |  |
| <li>(ii) Series resistance micro</li>        | ammeter                              |                      |  |  |  |  |  |
| (iii) Resistance potential div               | vider                                |                      |  |  |  |  |  |
| (iv) Any of the above                        |                                      |                      |  |  |  |  |  |

- (d) Failure during switching impulse tests are can be determined by
  - (i) Visible in oscillograms (ii) Loud noise produced (iii) External flashovers (iv) All of these
- (e) In routine tests, the cable is tested by applying an ac voltage of
  - 2 times the rated value (ii) 2.5 times the rated value **(i)**
  - (iii) 3 times the rated value (iv) 3.5 times the rated value
- (f) Insulation is necessary for the protection of equipment. Insulation is not necessary between (i) Coils and earth (ii) Coils of different phases (iii) Turns in a coil (iv) None of these
- (g) The thermal breakdown stresses are
  - (i) Lower under ac conditions than under dc condition
  - (ii) Greater under ac condition than dc condition
  - (iii) Equal in both condition
  - (iv) None of these
- (h) Which is having higher breakdown strength?
  - (i) Solid dielectrics
  - (ii) Liquid dielectrics
  - (iii) Gases dielectrics
  - (iv) Equal in all

(i) Corona results in Code : 031836

2

.....

#### (i) improvement in power factor

- (ii) increased capacitive reactance of transmission lines
- (iii) radio interference
- (iv) better regulation
- (j) Switching surge is
  - (i) high voltage dc
  - (ii) high voltage ac
  - (iii) short duration transient voltage
  - (iv) hyperbolically dying voltage
- 2. A Rogowski coil is to be designed to measure impulse currents of 10 kA having a rate of change of current of 1011 A/s. The current is read by a VTVM as a potential drop across the integrating circuit connected to the secondary. Estimate the values of mutual inductance, resistance and capacitance to be connected, if the meter reading is to be 10 V for full sacle 14 deflection.
- 3. With neat sketch explain the working principle of a Cockcroft 14 - Walton voltage multiplier circuit.
- An impulse generator has eight stages with each condenser rated for 0.16  $\mu$ F and 125 kV. The load capacitor available is 1000 pF. Find the series resistance and the damping resistance needed to produce 1.2/50 µs impulse wave. What is the maximum output voltage of the generator, if the charging 14 voltage is 120 kV? 3

Code: 031836

P.T.O.

| 5. Disc | uss the different high voltage tests conducted or                | bushings.     |
|---------|------------------------------------------------------------------|---------------|
|         |                                                                  | 14            |
| 6. A So | hering bridge was used to measure the capac                      | itance and    |
| loss    | angle of a h.v. bushing. At balance, the observat                | ions were:    |
| they    | value of the standard condenser = 100 pF, $R_3$ =                | = 3180Ω,      |
| C,=     | 0.00125 $\mu$ F and R <sub>4</sub> = 636 $\Omega$ . What are the | values of     |
| capa    | acitance and tan $\delta$ of the bushing.                        | 14            |
| 7. Defi | ne the following terms:                                          | 14            |
| (a)     | Disruptive Discharge Voltage                                     |               |
| (b)     | Withstand Voltage                                                |               |
| (c)     | Fifty per cent Flashover Voltage                                 | 1             |
| (d)     | Hundred Per cent Flashover Voltage                               |               |
| (e)     | Creepage Distance                                                | -             |
| (f)     | a.c Test Voltages                                                | · · ·         |
| (g)     | Impulse Voltage                                                  |               |
| 8. Des  | ign a peak reading voltmeter along with a suit                   | able micro-   |
| am      | meter such that it will be able to read voltages                 | s, up to 100  |
| kV      | (peak). The capacitance potential divider ava                    | ailable is of |
| the     | ratio 1000:1.                                                    | 14            |
| 9. (a)  | State and explain Paschen's law.                                 | 4             |
| (b)     | Explain the Chubb-Fortescue method                               | for HVAC      |
|         | measurement.                                                     | 10            |
|         | ***                                                              |               |
|         | 021926                                                           |               |

# **Question bank**

**Q.1-** Explain the method of controlled tripping of impulse generators. Why is controlled tripping necessary?

**Q.2-** What is the trigatron gap? Explain its function and operation.

**Q.3-** What is capacitance voltage transformer? Explain with a phasor diagram how a tuned capacitive voltage transformer can be used for voltage measurement in power system.

**Q.4-** Compare the use of uniform field electrode spark gap and sphere gap for measuring peak values of voltages.

**Q.5-** Explain the partial discharge tests on high voltage cables. How is a fault in the insulation located in this test?

**Q.6-** What is an operating duty cycle test on a surge arrestor? Why is it more significant than other tests?

**Q.7-** Give the application of gases and gas mixtures as insulating medium in high voltage switchgear and high voltage power cables.

Q.8- How is the insulation arrangement done for different parts of switchgear?

**Q.9-** Explain the various theories that explain breakdown in commercial liquid dielectrics?

**Q.10-** What is "stressed oil volume theory", how does it explain breakdown in large volumes of commercial liquid dielectrics?

**Q.11-** What do you understand by intrinsic strength of a solid dielectric? How does breakdown occur due to electron in a solid dielectric

**Q.12-** What are the various methods of generating high voltage AC at power frequency explain any one in detail.

## **Reference materials**

<u>Textbooks</u>

**TB1:** 'High Voltage Engineering' by M.S. Naidu, V Kamraju, Third Edition, Tata Mcgraw Hill

**TB2**: 'High Voltage Engineering' by C.L.Wadhea, Third Edition, New Age International Publisher

#### <u>Reference Books</u>

**RB1: '**High Voltage Engineering Fundamentals' by E. Kuffel, W.S. Zaengl, J Kuffel, Second Edition, Newnes

#### **Other readings and relevant websites**

| S.No. | Link of Journals, Magazines, websites and Research Papers           |
|-------|---------------------------------------------------------------------|
| 1     | http://digital-library.theiet.org/content/journals/hve              |
| 2     | http://ieeexplore.ieee.org/xpl/aboutJournal.jsp?punumber=7494695    |
| 3     | https://www.sciencedirect.com/science/article/pii/S0016003213900442 |
| 4     | https://www.iospress.nl/book/high-voltage-engineering/              |
| 5     | https://journals.indexcopernicus.com/search/details?id=34045        |