## MUZAFFARPUR INSTITUTE OF TECHNOLOGY, MUZAFFARPUR



# COURSE FILE OF STRENGTH OF MATERIALS (MEUG 021306)

# Faculty Name: MR. ARVIND KUMAR MADHESHIYA ASSISTANT PROFESSOR

## DEPARTMENT OF MECHANICAL ENGINEERING



विज्ञान एवं प्रावैधिकी विभाग Department of Science and Technology Government of Bihar

## **CONTENTS**

- 1. Cover Page & Content
- 2. Vision of the Department
- 3. Mission of the department
- 4. PEO's and PO's
- 5. Course objectives & course outcomes (CO's)
- 6. Mapping of CO's with PO's
- 7. Course Syllabus and GATE Syllabus
- 8. Time table
- 9. Student list
- **10.Course Handout**
- 11.Lecture Plan
- 12. Assignment sheets
- **13.**Tutorial Sheets
- **14.Sessional Question Papers**
- 15.0ld End Semester Exam (Final Exam) Question Papers
- 16. Question Bank
- **17.** Power Point Presentations
- 18. Lecture Notes
- **19. Reference Materials**
- 20.Results
- 21. Result Analysis
- 22. Quality Measurement Sheets
  - a. Course End Survey
  - b. Teaching Evaluation

## **Department of Mechanical Engineering**

## Vision

• To strengthen the region through imparting superior quality technical education and research; which enables the fulfillment of industrial challenge and establish itself as a Centre of Excellence in the field of Mechanical Engineering.

## Mission

- To build an academic environment of teaching and lifelong learning for students to make them competitive in context with advance technological, economic and ecological changes.
- To enable the students to enhance their technical skills and communications through research, innovation and consultancy projects.
- To share and explore the accomplishments through didactic, enlightenment, R & D programs with technical institution in India and abroad.

## **Mechanical Engineering Program Educational Objectives**

- Graduates will spread and enhance their technical capability and proficiency through vital domain of economic, environmental and social concerns affiliated with the mankind and industry.
- Graduates will able to work professionally with modern methods in the area of Thermal, Mechanical System Design, Manufacturing, Measurement, Quality control and other interdisciplinary fields of concerns.
- Graduates will practice Mechanical engineering in sensible, flexible and ethical manner to benefit the society, industry and nation toward the rapidly changing global technical standards.
- Graduates will serve as ambassadors for engineering by their knowledge, creativity, imagination and innovation and set new extremes in their profession through lifelong learning.

## Mechanical Engineering Student Outcomes

Students who complete the B.E. degree in ME will be able to:

- 1. An ability to apply the knowledge of mathematics, basic sciences and engineering concepts to solve the complex engineering problems.
- 2. The ability to conduct experiments and to critically analyze and interpret the experimental data to reach at substantial outcomes.
- 3. An ability to design systems, components, or processes to meet appropriate needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
- 4. An ability to identify, formulates, and solves the complex engineering problems.
- 5. An ability to function on multi-disciplinary teams that leads the multi- disciplinary projects.
- 6. An understanding of professional and ethical responsibility.
- 7. An ability to communicate effectively with written, oral, and visual means.
- 8. An ability to understand the impact of engineering solutions in a global, environmental, economic and societal context.
- 9. An ability to recognize the need to engage in life-long learning.
- 10. An ability to attain knowledge of contemporary issues.
- 11. An ability to use the techniques, skills, and modern tools necessary for Mechanical engineering practice.
- 12. Possess ability to estimate costs, estimate quantities and evaluate materials for design and manufacturing purposes.

### **Course Description**

Strength of Materials is a fundamental subject needed primarily for the students of Mechanical sciences. As the engineering design of different components, structures etc. used in practice are done using different kinds of materials, it is essential to understand the basic behavior of such materials. The objective of the present course is to make the students acquainted with the concept of load resultant, consequences and how different kinds of loadings can be withstood by different kinds of members with some specific materials.

## **Course Objectives**

To provide basic knowledge in mechanics of materials so that the students can solve real engineering problems and design engineering systems.

## **Course Outcomes**

- **CO1** To get the knowledge of properties of material, stress, thermal stress and various mechanical components.
- **CO2** Able to understand how different components will fail under load with help of theories of failure for brittle and ductile materials.
- CO3 Able to apply concepts of stress, strain, principle stress in 1D, 2D and 3D objects and also able to apply stress functions, and calculate stresses in plates and shells, thick circular cylinders and discs and employ contact stresses and stress concentration knowledge
- **CO4** Able to analyze the different methods of unsymmetrical bending analysis and concept of shear center.
- **CO5** Able to evaluate force, stress and displacement in simple structures with use of energy methods.
- CO6 Able to create stress-strain model for any mechanical component.

| Sr. No. | Course Outcome                                                                                                                                                                                                                                                                         | PO                         |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 1.      | <b>CO1</b> To get the knowledge of properties of material, stress,                                                                                                                                                                                                                     | PO1, PO3                   |
|         | thermal stress and various mechanical components.                                                                                                                                                                                                                                      |                            |
| 2.      | <b>CO2</b> Able to understand how different components will fail under load with help of theories of failure for brittle and ductile materials.                                                                                                                                        | PO1, PO2, PO7              |
| 3.      | <b>CO3</b> Able to apply concepts of stress, strain, principle stress in 1D, 2D and 3D objects and also able to apply stress functions, and calculate stresses in plates and shells, thick circular cylinders and discs and employ contact stresses and stress concentration knowledge | PO2, PO6, PO8, PO9         |
| 4.      | <b>CO4</b> Able to analyze the different methods of unsymmetrical bending analysis and concept of shear center.                                                                                                                                                                        | PO2, PO4, PO11             |
| 5.      | <b>CO5</b> Able to evaluate force, stress and displacement in simple structures with use of energy methods.                                                                                                                                                                            | PO3, PO6 PO7, PO8,<br>PO12 |
| 6.      | <b>CO6</b> Able to create stress-strain model for any mechanical component.                                                                                                                                                                                                            | PO3, PO4 P87, PO8,<br>PO10 |

| <b>CO4</b> Able to analyze the different methods of unsymmetrical bending analysis and concept of shear center.      |  | v |   | v | v |   | v |   |   | v |   |
|----------------------------------------------------------------------------------------------------------------------|--|---|---|---|---|---|---|---|---|---|---|
| <b>CO5</b> Able to evaluate force,<br>stress and displacement in<br>simple structures with use<br>of energy methods. |  |   | ٧ |   |   | v | ٧ | ٧ | ٧ |   | v |
| <b>CO6</b> Able to create stress-<br>strain model for any<br>mechanical component.                                   |  |   | ٧ |   |   |   | ٧ |   | ٧ |   |   |

## 02 1306 STRENGTH OF MATERIAL

L-T-P: 3-0-3

1. Introduction and fundamental concept : Introduction, purpose & scope of the subject, basic assumption, types of forces (external & internal forces), classification of materials, st. venant's principles, principle of super position, generalized hook's law for isotropic & elastic material. Simple stresses & strain – Axial loads – safety concepts : general concepts; stress analysis of axially loaded base : axial strains and deformation in bars : Strains and deformation axially loaded bars – stress – strain relationship – Possion's ratio, analysis of bars of varying sections. Composite bars, thermal stresses, Relationship between elastic constants.

#### Lecture : 13

2. Torsion : Torsion stress and deformation in circular member, design of circular member in torsion.

### Lecture : 4

Lecture : 4

- 3. Shear force and bending moment diagram of the transverse section of the beam.
- **4. Deflection of beams :** Deflection of integration, deflection by moments area method.

## Lecture : 5

- Two dimensional stress analysis : Plane stress components on general plane at a point, Mohr's circle of stress.
   Lecture : 5
- 6. Introduction to advance mechanics of solid : thin cylinder, thick cylinder radial and hoop stresses, application of compound stress theories, elastic strain energy and its application : Elastic strain energy of a rod under various kinds of loading elastic strain energy for various states of stress. Simple application, Castiglione theorem.
  Lecture : 11

#### Text Books :

- (1) Strength of material by GH Ry der
- (2) Mechanics of solids by Kazimi
- (3) Mechanics of solids by LS Srinath
- (4) Mechanics of solids by Singh & Jha

#### **Reference Books :**

- (1) Mechanics of solids by Timoshinko & Gere
- (2) Mechanics of solids by Popov

#### Credit : 5

## GATE- ME Mechanical Engineering

**Mechanics of Materials:** Stress and strain, elastic constants, Poisson's ratio; Mohr's circle for plane stress and plane strain; thin cylinders; shear force and bending moment diagrams; bending and shear stresses; deflection of beams; torsion of circular shafts; Euler's theory of columns; energy methods; thermal stresses; strain gauges and rosettes; testing of materials with universal testing machine; testing of hardness and impact strength.

## MUZAFFARPUR INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING B.Tech. 3<sup>rd</sup> (THIRD) Semester (2017 Batch) TIME TABLE WITH EFFECT FROM 23/07/2018

| 70.1.37 | L (09.00-10.00AM)  | II (10.00-I1.00AM)                       | III (11.00-12.00PM)    | IV (12.00-01.00PM)               |                            | V (02.00                                 | -03.00PM)                  | VI (03.0               | 0-04.00PM)           | VII (04.)                | 30-05.001/M             |        |  |  |
|---------|--------------------|------------------------------------------|------------------------|----------------------------------|----------------------------|------------------------------------------|----------------------------|------------------------|----------------------|--------------------------|-------------------------|--------|--|--|
| MON     | MAT SC (HKC)<br>36 | M-III (SKJ) 36                           | SOM (AKM) 36           | OBIP (ANK) 36                    | R                          | OBIP<br>(ANK)<br>TEST 36                 | MAT<br>SC.(HKC)<br>TEST 36 | M-III (SKJ)<br>TEST 36 | SOM (AKM)<br>TEST 36 | FM<br>(GK)<br>TEST<br>36 | THDM<br>(AK)<br>TEST 36 |        |  |  |
| TUE     | THDM (ΔK) 36       | OBIP (ANK) 36 MAT SC (HKC) FLD MECH (GK) |                        | K) 36 MAT SC (HKC) FLD MECH (GK) |                            | DBIP (ANK) 36 MAT SC (HKC) FLD MECH (GK) |                            | E                      |                      | OM LAB(AI                | K+AKM)                  |        |  |  |
|         |                    |                                          | 50                     | 50 20                            |                            |                                          | FLD MEC<br>36              | CH (T)(GK)             | FLD MEC              | H (T)(GK) 36             |                         |        |  |  |
| WED     | VED FLD MECH (GK)  |                                          |                        | FLD MECH (GK)                    | OBIP (ANK) 36 THDM (AK) 36 | O MECH (GK) OBIP (ANK) 36 TH             |                            | С                      |                      | 5                        | SOM LAB(A)              | K+AKM) |  |  |
|         |                    |                                          |                        |                                  |                            | M-III (T)                                | (SKJ) 36                   | FLD MEC                | H (T) (GK) 36        | FLD M<br>(GK) 3          | IECH (T)<br>6           |        |  |  |
| THI     | SOM (AKM) 36       | FLD                                      | MECH LAB (GK +         | SK)                              | E                          | MAT SC (HKC) 36                          |                            | THDM (T) (AK) 36       |                      | M-III (T) (SKJ)          |                         |        |  |  |
| mo      |                    | MAT SC (T)<br>(HKC) 36                   | MAT SC (T)<br>(HKC) 36 | THDM (T) (AK)<br>36              |                            |                                          |                            | THEN (T) (AP)          |                      |                          |                         |        |  |  |
| FRI     | FLD MECH (GK)      |                                          | SK)                    | S                                | M-III                      | (SKJ) 36                                 | THDM                       | (1)(AK) 30             | THOM                 | 36                       |                         |        |  |  |
| TRI     | 36                 | MAT SC (T)<br>(HKC) 36                   | MAT SC (T)<br>(HKC) 36 | THDM (T) (AK)<br>36              |                            |                                          |                            |                        |                      |                          |                         |        |  |  |
| SAT     |                    | SOM (AKM) 36                             | THDM (AK) 36           | M-III (SKJ) 36                   | S                          |                                          |                            |                        |                      |                          |                         |        |  |  |
|         |                    |                                          |                        |                                  |                            |                                          |                            |                        |                      |                          |                         |        |  |  |

| Co. A. J.C. Martin                                             | Faculty Name                     |  |  |  |
|----------------------------------------------------------------|----------------------------------|--|--|--|
| Course Code / Subject Name                                     | Prof. Anil Kumar (ANK)           |  |  |  |
| 24101 / Organizational Benaviour & Industrial Psychology (GBP) | Prof. Gulshan Kumar (GK)         |  |  |  |
| 01107 / Fluid Mechanics (FLD MECH)                             | Prof. Hemant Kr. Choudhary (HKC) |  |  |  |
| 02102 / Material Science (MATSC)                               | Dr. Shyam Kr. Jha (SKJ)          |  |  |  |
| 21103/ Mathematics-iii (M-III)                                 | Prof. Arvind Kr. Madheshiva      |  |  |  |
| 02106 / Strenght of Material (SOM)                             | Prof. Amit Vumor                 |  |  |  |
| 02107 / Thermodynamics (THDM)                                  | PTOL Annu Kumai                  |  |  |  |

Prof.-in-charge

(Dept. of Mech. Eugg.)

## MUZAFFARPUR INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING B.Tech. 5<sup>th</sup> (FIFTH) Semester (2016 Batch) TIME TABLE WITH EFFECT FROM 23/07/2018

| DAY | I (09.00-10.00AM) | II (10.00-11.00AM) | III (11.00-12,00PM) | IV (12.00-01.00PM) |              | V (02.00                                      | 0-03.00PM)                | VI (03                     | .00-04.00PM)            | VII (04                    | 00-05.00PM)              |                  |              |              |              |              |              |              |              |              |  |         |             |        |             |   |  |
|-----|-------------------|--------------------|---------------------|--------------------|--------------|-----------------------------------------------|---------------------------|----------------------------|-------------------------|----------------------------|--------------------------|------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--|---------|-------------|--------|-------------|---|--|
| MON | IS-T1 47          | M/C TLS (SK)<br>47 | F.MACH (SG)<br>47   | ST.PWR(NBK)<br>47  | R            | IS(T1)<br>TEST 47                             | F.MACH<br>(SG)<br>TEST 47 | ST.PWR<br>(NBK)<br>TEST 47 | DOM<br>(SAR)<br>TEST 47 | M/C TLS<br>(SK)<br>TEST 47 | PMIR<br>(RKR)<br>TEST 47 |                  |              |              |              |              |              |              |              |              |  |         |             |        |             |   |  |
| TUE | IS-T1 47          | F.MACH (SG)<br>47  | M/C TLS (SK)<br>47  | PMIR (RKR) 47      | E            | FLD MACHINERY LAB (SG+GK) / ST.PWR S. LAB (NE |                           | K+SAR)                     |                         |                            |                          |                  |              |              |              |              |              |              |              |              |  |         |             |        |             |   |  |
| WED |                   | ST.PWR (NBK)<br>47 | M/C TLS (SK)<br>47  | DOM (SAR) 47       | С            | ST.PWR S. LAB (NBK+SAR)                       |                           |                            |                         |                            |                          |                  |              |              |              |              |              |              |              |              |  |         |             |        |             |   |  |
| THU |                   | DOM (CAD) 17       |                     |                    | 1010011.1.00 | E                                             |                           |                            | - DOM L                 | AB (SAR) -                 |                          |                  |              |              |              |              |              |              |              |              |  |         |             |        |             |   |  |
|     |                   | DOM (SAR) 47       | PMIR (RKR) 47       | 15(11)4/           | 18(11)47     | M/C TLS                                       | (T) (SK) 47               | M/C TL                     | S(T) (SK) 4             | 7                          |                          |                  |              |              |              |              |              |              |              |              |  |         |             |        |             |   |  |
| FRI | F.MACH (SG)       | ST.PWR (NBK)       | DMD / DV D) /7      | DOM (84D) /7       | S            | *******                                       |                           | - DOM L                    | AB (SAR) -              |                            |                          |                  |              |              |              |              |              |              |              |              |  |         |             |        |             |   |  |
|     | 47                | 47 PMIR (RKR) 47   | 47                  | 47                 | 47           | 47                                            | 47                        | 47                         | 47                      | 47                         | 47                       | PMIR (RKR) 47 DC | DOM (SAR) 47 | DOM (SAR) 4/ |  | M/C TLS | (T) (SK) 47 | M/C TL | S(T) (SK) 4 | 7 |  |
| SAT |                   | FLD MA             | CHINERY LAB (SG     | +GK)               | S            |                                               |                           |                            |                         |                            |                          |                  |              |              |              |              |              |              |              |              |  |         |             |        |             |   |  |
|     |                   |                    |                     |                    |              |                                               |                           |                            |                         |                            |                          |                  |              |              |              |              |              |              |              |              |  |         |             |        |             |   |  |

| Course Code / Subject Name                                 | Faculty Name                 |
|------------------------------------------------------------|------------------------------|
| 24102 / PERSONAL MANAGEMENT AND INDUSTRIAL RELATION (PMIR) | Prof. Ravi Kant Ranjan (RKR) |
| 06105 / Information Security (IS)                          | T1- Prof. Savyasachi         |
| 02110 / Fluid Machinary (F. MACH)                          | Prof. Shobhit Gusain (SG)    |
| 02112 / Steam Power System (ST. PWR)                       | Prof. Nibha Kumari (NBH)     |
| 02113 / Dynamics of Machinery (DOM)                        | Prof. Sarvesh Kumar (SAR)    |
| 02114 / Machine Tools and Machinery (M/C TLS)              | Prof. Santosh Kumar (SK)     |

Guellan Kurr 21/07/2018

Prof.-in-charge (TT) (Dept. of Mech. Engg.)

## MUZAFFARPUR INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING B.Tech. 7<sup>th</sup> (Seventh) Semester (2015 Batch) TIME TABLE WITH EFFECT FROM 23/07/2018

|      | D.Teen                 |                    |                              | IN/ (12:00-01:00PMD |                                     | V (02.00                        | -03.00PM)                      | VI (03.00-04.00)      | PM)                           | VII (04.00-05.00PM       |      |                       |
|------|------------------------|--------------------|------------------------------|---------------------|-------------------------------------|---------------------------------|--------------------------------|-----------------------|-------------------------------|--------------------------|------|-----------------------|
| DAY  | I (09.00-10.00AM)      | II (10.00-11.00AM) | III (11.00-12.00PM)          | 10 (12.00-01.001)   |                                     | OR (SG)                         | AUTO, MEC                      | RAC (PBH)             | ICE (PR                       | H) CAD/M (JY)<br>TEST 53 |      |                       |
| MON  | -                      | CAD-M (JY) 53      | AUT.MEC                      | ICE (PBH) 53        |                                     | TEST 53                         | (SAR)<br>TEST 53               | TE21 22               | 1.1.1.1.                      |                          |      |                       |
| 10.1 |                        |                    | (SAR)53                      | (SAR)53             |                                     |                                 | IC ENGINE LAB (HKC)/CAD-M(JKY) |                       |                               |                          |      |                       |
| TUE  | RAC(PBH) 53            | AUT.MEC            | ICE (PBH) 53                 | OR (SG) 53          |                                     | I O ENCINE LAB (HKC)/CAD-M(JKY) |                                |                       | KY)                           |                          |      |                       |
| WED  | AUT.MEC                | (SAR) 53           | OR (SG) 53                   | RAC (PBH) 53        |                                     | I.C. ENGINE DAD (Inter 212 1)   |                                |                       |                               |                          |      |                       |
| TLE  | (SAR) 53               | CAD-IN (51) 55     |                              |                     | AD-M (\$1) **                       |                                 |                                | R                     | - RAC LAB (PBH + RKR)         |                          |      |                       |
| THU  | ICE (PPH) 53           | RAC (PBH)53        | RAC (PBH)53                  | RAC (PBH)53         | RAC (PBH)53                         | OR (SG)53                       | AUT.MEC<br>(SAR) 53            |                       | OR (T) (SG) 53 OR (T) (SG) 53 |                          | 3    | AUT.MEC (1<br>(SAR)53 |
|      | ICE (FBH) 55           | Auto (comp         |                              | (artis)             |                                     |                                 | R                              | - RAC LAB (PBH + RKR) |                               |                          |      |                       |
| FRI  | AUT.MEC (T)<br>(SAR)53 | MINOR PROJE        | MINOR PROJECT (MDI + PBH + R |                     | MINOR PROJECT (MDI + PBH + RKR+HKC+ |                                 | 4                              | OR (T) (              | SG) 53                        | OR (T) (SG) 5            | i3 · | AUT.MEC (T<br>(SAR)53 |
|      | NBH+NKD+SG+S           |                    | TOAIN 33                     | SAN) 23             |                                     | AUT                             | .MEC (T)                       |                       |                               |                          |      |                       |
| SAT  | CAD-M (JY) 53          | MINOR PROJE        | CT ( GK + AKM+<br>FSK) 53    | NK+IF+AKN           |                                     | (S                              | AR)53                          |                       |                               |                          |      |                       |

|                                                          | Faculty Name              |
|----------------------------------------------------------|---------------------------|
| Course Code / Subject Name                               | Prof. Shobhit Gusain (SG) |
| 02123 / Operation Research (OR)                          | Prof. Sarvesh Kumar (SAR) |
| 02124 / Automotive Mechnics (AUT. MEC)                   | Prof. Prabhanshu (PBH)    |
| 02120 / Refrigeration and Air Conditioning (RAC)         | Prof. Jigesh Yadav (JY)   |
| 02130 / Computer Aided Design and Manufacturing (CAD/M)  | Prof. Prabhanshu (PBH)    |
| 02122 / Internal Combustion Engine and Gas Turbine (ICE) | Prof. Santosh Kumar (SK)  |
| 02114 / Machine Tools and Machinery (M/C TLS)            |                           |

Gulfan Kmer 21/07/2018

## TIME TABLE (Session 2018-19) Odd Semester

## MIT Muzaffarpur

FACULTY:- Mr. Arvind Kumar Madheshiya (Mechanical Engineering Department)

| TIME<br>DAY | <b>L-1</b><br>09.00-10.00              | <b>L-2</b><br>10.00-11.00              | <b>L-3</b><br>11.00-12.00              | <b>L-4</b><br>12.00-01.00 |       | <b>L-5</b><br>02.00-03.00 | <b>L-6</b><br>03.00-04.00                        | <b>L-7</b><br>04.00-05.00 |
|-------------|----------------------------------------|----------------------------------------|----------------------------------------|---------------------------|-------|---------------------------|--------------------------------------------------|---------------------------|
| Monday      |                                        |                                        | <b>SOM</b><br>(36)L<br>B. TECH(ME)-III |                           |       |                           |                                                  |                           |
| Tuesday     |                                        |                                        |                                        |                           | RAK   |                           | <b>SOM LAB</b><br>(36)LAB<br>B. TECH(ME)-III M-1 |                           |
| Wednesday   |                                        |                                        |                                        |                           | NCH B |                           | <b>SOM LAB</b><br>(36)LAB<br>B. TECH(ME)-III M-2 |                           |
| Thursday    | <b>SOM</b><br>(36)L<br>B. TECH(ME)-III |                                        |                                        |                           | LUN   |                           |                                                  |                           |
| Friday      |                                        |                                        |                                        |                           |       |                           |                                                  |                           |
| Saturday    |                                        | <b>SOM</b><br>(36)L<br>B. TECH(ME)-III |                                        |                           |       |                           | MD LAB<br>(AKM+SK)<br>B. TECH(ME)-IV             |                           |

## MUZAFFARPUR INSTITUTE OF TECHNOLOGY MUZAFFARPUR B. TECH. 4<sup>th</sup> SEMESTER 2016 BATCH MECHANICAL BRANCH

| Sl. No. | College Roll<br>No. | Name                  |
|---------|---------------------|-----------------------|
| 1       | 17M01               | HIMANSHU KUMAR        |
| 2       | 17M02               | KESHAY KUMAR          |
| 3       | 17M03               | SUMIT KUMAR THAKUR    |
| 4       | 17M04               | SHIVAM                |
| 5       | 17M05               | DHEERAJ KUMAR         |
| 6       | 17M06               | RAHUL RAJ             |
| 7       | 17M07               | AVINASH KUMAR         |
| 8       | 17M08               | RAHUL KUMAR           |
| 9       | 17M09               | SATISH KUMAR          |
| 10      | 17M10               | NARENDRA KUMAR KAMAT  |
| 11      | 17M11               | RAUSHAN KUMAR         |
| 12      | 17M12               | SAUBHIK KUMAR MAHTO   |
| 13      | 17M13               | DHIRAJ KUMAR          |
| 14      | 17M14               | PRABHAKAR PANDEY      |
| 15      | 17M15               | PRATYUSH CHANDRA      |
| 16      | 17M16               | HIMASHU KUMAR         |
| 17      | 17M17               | ANIKET KUMAR          |
| 18      | 17M18               | AYUSH KUMAR           |
| 19      | 17M19               | SAURAV KUMAR          |
| 20      | 17M20               | MD AFZAL              |
| 21      | 17M21               | VIKASH KUMAR          |
| 22      | 17M22               | HARIDA YESH TEJAS JHA |
| 23      | 17M23               | RAJ KUMAR             |
| 24      | 17M24               | ABHIMANYU KUMAR       |
| 25      | 17M25               | SUDHANSHU RANJAN      |
| 26      | 17M26               | MANJEET RAJ           |
| 27      | 17M27               | ANJALI GUPTA          |
| 28      | 17M28               | AJAY KUMAR            |
| 29      | 17M29               | ABHIMANYU KUMAR       |

## MUZAFFARPUR INSTITUTE OF TECHNOLOGY MUZAFFARPUR B. TECH. 4<sup>th</sup> SEMESTER 2016 BATCH MECHANICAL BRANCH

| 30 | 17M30 | AJIT KUMAR            |
|----|-------|-----------------------|
| 31 | 17M31 | RAHUL KUMAR           |
| 32 | 17M32 | GAURAV KUMAR          |
| 33 | 17M33 | SHIVAM SAGAR          |
| 34 | 17M34 | NITISH KUMAR          |
| 35 | 17M35 | VEER KUMAR            |
| 36 | 17M36 | BIRENDRA KUMAR PANDIT |
| 37 | 17M37 | SANTOSH KUMAR         |
| 38 | 17M38 | PRASHANT KUMAR        |
| 39 | 17M39 | ALOK KUMAR            |
| 40 | 17M40 | AYUSHI DIVYA          |
| 41 | 17M41 | MAYANK GAUTAM         |
| 42 | 17M42 | RAMAN MAHTO ANAND     |
| 43 | 17M43 | KISHAN RAJ            |
| 44 | 17M44 | RAJANISH KUMAR SHARMA |
| 45 | 17M45 | PRITI KUMARI          |
| 46 | 17M46 | SHUBHAM KUMAR         |
| 47 | 17M47 | ASHWANI KUMAR         |
| 48 | 17M48 | AMAR KUMAR RISHI DEV  |
| 49 | 17M49 | RAHUL KUMAR           |
| 50 | 17M50 | GAURAV KUMAR          |
| 51 | 17M51 | RAJNISH KUMAR RANJAN  |
| 52 | 17M52 | SHATRUNJAY KUMAR      |
| 53 | 17M53 | SAURAV KUMAR          |
| 54 | 17M54 | NAND KISHOR BHARTI    |
| 55 | 17M55 | CHANDAN KUMAR         |
| 56 | 17M56 | RITISH KUMAR          |
| 57 | 17M57 | SALIF KHAN            |
| 58 | 17M58 | PRIYA RANA            |
| 59 | 17M59 | ROHIT RANJAN          |
| 60 | 17M60 | HARSH RAJ             |
| 61 | 17M61 | AMIT KUMAR CHOUDHARY  |

## MUZAFFARPUR INSTITUTE OF TECHNOLOGY MUZAFFARPUR B. TECH. 4<sup>th</sup> SEMESTER 2016 BATCH MECHANICAL BRANCH

| MECHANICAL BRANCH |    |       |               |  |  |  |
|-------------------|----|-------|---------------|--|--|--|
|                   | 62 | 17M62 | SUNIL PUSHPAM |  |  |  |
|                   | 63 | 17M63 | MOHIT RAJ     |  |  |  |

#### Test No.- 01 Session 2018-19 (Odd Semester)

Subject: - Strength of Material Semester- 3<sup>rd</sup> (B. Tech) Time – 1:00 Hours

Branch- Mechanical Engg. Maxi. Marks: - 30

### **NOTE:** Attempt all the questions.

Q.1 Explain the following:

- a) Concept of stress
- **b**) Thermal stress
- c) Principle stress
- d) Poisson's ratio

### NOTE: Attempt any two questions.

Q. 2 Explain Von-Mises criteria of theories of failure in detail.

 $= 12 \text{ x } 10^{-6} \text{ per } {}^{0}\text{C},$ 

**Q.** 3 A steel rod 15 m long is at a temperature of  $15^{\circ}$ C. Find the free expansion of the length when the temperature is raised to  $65^{\circ}$ C. Find the temperature stress produced when:

- a) The expansion of rod is prevented;
- b) The rod is permitted to expand by 6 mm.

Take:

and  $E = 200 \text{ GN/mm}^2$ 

**Q. 4** Derive the expressions of compatibility equation in 3-dimensions and also draw the element with all label of stresses.

## NOTE: Attempt any one questions.

Q. 5 A Below figure shows a rigid bar hinged at A and supported in a horizontal position by two identical steel wires. Neglect the weight of beam. Find out the tensions  $T_1$  and  $T_2$  induced in these steel wires by a vertical load P applied as shown in figure.



**Q. 6** Derive the expression for principle stresses with analytical method and show that the sum of normal stresses at two mutually perpendicular plane will be always constant.

(1.5x4=6 Marks)

(7x2 = 14 Marks)

(10x1 = 10 Marks)

#### Test -02 Session 2016-17 (Odd Semester)

### **NOTE:** Attempt all the questions.

Q.1 Explain the following:

- a) What is shear center? Define clearly.
- **b**) State Castigliano's theorem for concentrated loads.
- c) List the all assumptions made in simple theory of bending.
- **d**) Define Impact loading. Explain how impact loading is more dangerous for mechanical components.

#### **NOTE:** Attempt any two questions.

- **Q. 2** Differentiate between thick cylinder and thin cylinder and also find out the change in volume of a Thin cylinder shell due to an internal pressure.
- **Q.3** A block of material is subjected to a tensile strain of  $12 \times 10^{-6}$  and a compressive strain of  $15 \times 10^{-6}$  on planes at right angles to each other. There is also a shear strain of  $12 \times 10^{-6}$  and there is no strain on planes at right angles to the above planes. Calculate the principal strain magnitude and direction.
- **Q. 4** Differentiate the stress, strain, and strain energy symmetry. How the number of independent elastic constant reduces to 21 from 81 considering all above symmetry for anisotropic materials?

#### NOTE: Attempt any one questions.

- Q. 5 Establish relationship between length of column and equivalent length for different end conditions.
- **Q. 6** Determine the deflection at C and D in the beam by Macaulay's method as shown in figure 1. Take:  $E = 200 \times 10^6 \text{ kN/m}^2$  and  $I = 20 \times 10^{-5} \text{ m}^4$ .



(1.5x4=6 Marks)

**Branch- Mechanical Engg.** 

Maxi. Marks: - 30

(10x1 = 10 Marks)

(7x2 = 14 Marks)

| MUZA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MUZAFFARPUR INSTITUTE OF TECHNOLOGY,<br>MUZAFFARPUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                    |                                |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------|--------------------------------|--|--|
| Left and the second sec | Subjection |                                        |                                    |                                |  |  |
| Note: Attempt all the questions.<br>Calculator is allowed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | Τα                                 | otal Marks: 10                 |  |  |
| Question No.1. When a tensile or comp<br>(a) $\frac{P}{A}$ (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | pressive force (P) act                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s on a body, the chan $(c)\frac{p}{A}$ | ge in its len<br>(d) $\frac{P}{L}$ | gth is given by                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                    | (1.5 Marks)                    |  |  |
| Question No.2. Poisson's ratio for stee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | l is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                                    |                                |  |  |
| (a) 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (b) 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (c) 0.30                               | (0                                 | l) 0.43<br>( <b>1.5</b> Marks) |  |  |
| Question No.3. The ratio of lateral stra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | in to linear strain is k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nown as                                |                                    |                                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                    | (1.5 Marks)                    |  |  |
| <b>Question No.4.</b> Relation between E (Y of rigidity) is given by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | oung's Modulus), K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (Bulk modulus of ela                   | sticity), and                      | l G (modulus                   |  |  |
| $(a)\frac{9K}{3K+6} \tag{(a)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | b) $\frac{3K+C}{6K}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $(c)\frac{6K}{K+3C}$                   | $(d)\frac{\Im K}{\Im K+G}$         |                                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                    | ( <b>1.5</b> Marks)            |  |  |
| Question No.5. Explain the concept of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (4 Marks)                              |                                    |                                |  |  |

A CONTRACTOR

(Space for Answer)



## MUZAFFARPUR INSTITUTE OF TECHNOLOGY, MUZAFFARPUR

Subject: Strength of Materials Week Test: 02

Note: 1. Attempt all the questions. 2. Calculator is allowed. **Total Marks: 10** Question No.1. Robert Hooke discovered experimentally that within elastic limit (c)  $\frac{s}{s}$  = a constant (b) stress  $\times$  strain = 1 (a) Stress = strain(d) None of these (1 Mark) **Question No.2.** Maximum stress ( $\sigma_{max}$ ) induced in a bar of length *I*, rotating at an angular velocity  $\omega$ , is given by (a)  $\frac{1}{2} \rho \omega^2 l^2$  $(b) \frac{1}{\omega} \rho \omega^2 l^2$ (c)  $\rho \omega^2 l^2$ (d)  $\rho \omega l^2$ (2 Marks) Question No.3. The elongation of a circular linearly tapered rod is given by (a)  $\frac{4P}{\pi \ d_1 d_2}$  (b)  $\frac{2P}{\pi \ d_1 d_2}$  (c)  $\frac{4P}{Ed_1 d_2}$ (a)  $\frac{4P}{\pi d_1 d_2}$  $(d) \frac{4P}{\pi d_1^2 d_2}$ Where, P = axial pull, and  $d_1$ ,  $d_2 = diameters$  at the two ends. (2 Marks) **Question No.4.** The true stress () - true strain ( $\epsilon$ ) diagram of a strain hardening material is shown in figure. First, there is loading up to point A, i.e., up to stress of 500 MPa and strain of 0.5. Then from point A, there is unloading up to point B, i.e., to stress of 100 MPa. Given that the Young's modulus E =

200 GPa, the natural strain at point B ( $\varepsilon_B$ ) is \_\_\_\_\_ (correct to three decimal places).



(2 Marks)

Question No.5.A horizontal bar with a constant cross-section is subjected to loading as shown in the figure. The Young's moduli for the sections AB and BC are 3*E* and *E*, respectively.



For the deflection at C to be zero, the ratio P/F is \_

(3 Marks)