akubihar.com Code: 211404 # B.Tech 4th Semester Exam., 2016 ## NUMERICAL METHODS AND COMPUTATIONAL TECHNIQUE Time: 3 hours Full Marks: 70 ### Instructions: - (i) The marks are indicated in the right-hand margin. - (ii) There are **NINE** questions in this paper. - (iii) Attempt **FIVE** questions in all. - (iv) Question No. 1 is compulsory. - 1. Answer the following as directed (any seven): 2×7=14 - (a) When is a matrix said to be rectangular matrix? - (b) When is an iterative method said to be of order p of convergence? - (c) What is the convergence of Newton-Raphson method? - (d) Name the two types of numerical methods for the solution of simultaneous linear algebra equations. gaws selobe decades. (Turn Over) (2) #### akubihar.com The A symbol is called forward difference operator. (Fill in the blank) - (f) The differences of the first-order forward differences are called _____. $\Delta(\Delta V)$? $\Delta^2 Y$ (Fill in the blank) - (g) What is the geometric significance of the trapezoidal rule? n=1 hitten o makes more - (h) What is quadrature? - (i) statement are used to repeat execution of a list of statements. (Fill in the blank) (i) The 20 10 statement is used to transfer control to a specified label. (Fill in the blank) - 2. (a) Find the root of the equation $x \tan x = 1.28$ that lies between 0 and 1, correct to two places of decimals, using bisection method. - (b) Write a computer program using C++ for the above equation using bisection method. 7-7=14 akubihar.com akı / Continued / ### akubihar.com 3. Find the inverse of the matrix $$A = \begin{vmatrix} 1 & 3 & 3 & 2 \\ 1 & 4 & 3 & 4 \\ 1 & 3 & 4 & 5 \\ 2 & 5 & 3 & 2 \end{vmatrix}$$ akubihar.com by Gauss elimination method. 14 The population of a town in the census is as given in the following data: | Vegr (x) 1961 1971 1981 1991 | | | | | | | |------------------------------|------|------|------|------|------|--| | Year (x) | 1961 | 1971 | 1981 | 1991 | 2001 | | | Population (in 1000's) | 46 | 66 | 81 | 93 | 101 | | | Topulation | | | | | | | Estimate the population in the year 1996 using Newton's (a) forward interpolation and 7+7=14 (b) backward interpolation formulas. 5. Fit a curve of the form $xy = a + bx^2$ of the following data by the method of least squares: 14 | DWILIE GARGE OF THE | | | | | | | | |---------------------|---|------|------|-------|-------|-------|--| | I | Y | 1 | 2 | 4 | 6 | 8 | | | | v | 5.43 | 6.28 | 10.32 | 14.86 | 19.51 | | | | | | | | | | | 6. The velocity v a particle at distance s from a point on its linear path is given in the following data: | following data : | | | | | | | | | | | | |------------------|--------|----|-----|-----|-----|------|------|------|------|------|--| | | s(m) | 0 | 2.5 | 5.0 | 7.5 | 10.0 | 12.5 | 15.0 | 17.5 | 20.0 | | | | υ(m/s) | 16 | 19 | 21 | 22 | 20 | 17 | 13 | 11 | 9 | | Estimate the time taken by the particle to traverse the distance of 20 metres, using Simpson's one-third rule. 14 - 7. Solve the equation $5x \frac{dy}{dx} + y^2 2 = 0$; y(4) = 1for $y(4\cdot 1)$ and $y(4\cdot 2)$ taking $h=0\cdot 1$, using simple Euler's method and modified Euler's method. - 8. Solve the equation $\frac{dy}{dx} = \frac{1}{x+y} \cdot y(0) = 1$ for $y(0\cdot 1)$ and $y(0\cdot 2)$, using Runge-Kutta method 14 9. Solve the equation y''(x) - xy(x) = 0 for $y(x_i)$, $x_1 = 0, 1/3, 2/3$, given that y(0) + y'(0) = 1 and y(1) = 1 by using boundary value problem. akubihar.com