akubihar.com

Code: 211404

B.Tech 4th Semester Exam., 2016

NUMERICAL METHODS AND COMPUTATIONAL TECHNIQUE

Time: 3 hours Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are **NINE** questions in this paper.
- (iii) Attempt **FIVE** questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Answer the following as directed (any seven):

 2×7=14
 - (a) When is a matrix said to be rectangular matrix?
 - (b) When is an iterative method said to be of order p of convergence?
 - (c) What is the convergence of Newton-Raphson method?
 - (d) Name the two types of numerical methods for the solution of simultaneous linear algebra equations.

 gaws selobe decades.

 (Turn Over)

(2)

akubihar.com

The A symbol is called forward difference operator.

(Fill in the blank)

- (f) The differences of the first-order forward differences are called _____. $\Delta(\Delta V)$? $\Delta^2 Y$ (Fill in the blank)
- (g) What is the geometric significance of the trapezoidal rule? n=1 hitten o makes more
- (h) What is quadrature?
- (i) statement are used to repeat execution of a list of statements.

(Fill in the blank)

(i) The 20 10 statement is used to transfer control to a specified label.

(Fill in the blank)

- 2. (a) Find the root of the equation $x \tan x = 1.28$ that lies between 0 and 1, correct to two places of decimals, using bisection method.
 - (b) Write a computer program using C++
 for the above equation using bisection
 method.
 7-7=14

akubihar.com

akı

/ Continued /

akubihar.com

3. Find the inverse of the matrix

$$A = \begin{vmatrix} 1 & 3 & 3 & 2 \\ 1 & 4 & 3 & 4 \\ 1 & 3 & 4 & 5 \\ 2 & 5 & 3 & 2 \end{vmatrix}$$

akubihar.com

by Gauss elimination method.

14

The population of a town in the census is as given in the following data:

Vegr (x) 1961 1971 1981 1991						
Year (x)	1961	1971	1981	1991	2001	
Population (in 1000's)	46	66	81	93	101	
Topulation						

Estimate the population in the year 1996 using Newton's (a) forward interpolation and 7+7=14 (b) backward interpolation formulas.

5. Fit a curve of the form $xy = a + bx^2$ of the following data by the method of least squares: 14

DWILIE GARGE OF THE							
I	Y	1	2	4	6	8	
	v	5.43	6.28	10.32	14.86	19.51	

6. The velocity v a particle at distance s from a point on its linear path is given in the following data:

following data :											
	s(m)	0	2.5	5.0	7.5	10.0	12.5	15.0	17.5	20.0	
	υ(m/s)	16	19	21	22	20	17	13	11	9	

Estimate the time taken by the particle to traverse the distance of 20 metres, using Simpson's one-third rule.

14

- 7. Solve the equation $5x \frac{dy}{dx} + y^2 2 = 0$; y(4) = 1for $y(4\cdot 1)$ and $y(4\cdot 2)$ taking $h=0\cdot 1$, using simple Euler's method and modified Euler's method.
- 8. Solve the equation $\frac{dy}{dx} = \frac{1}{x+y} \cdot y(0) = 1$ for $y(0\cdot 1)$ and $y(0\cdot 2)$, using Runge-Kutta method

14

9. Solve the equation y''(x) - xy(x) = 0 for $y(x_i)$, $x_1 = 0, 1/3, 2/3$, given that y(0) + y'(0) = 1 and y(1) = 1 by using boundary value problem.

akubihar.com