Code: 211404

M FORTRAM

## B.Tech 4th Semester Exam., 2018

## NUMERICAL METHODS AND COMPUTATIONAL TECHNIQUE

Time: 3 hours Full Marks: 70

## Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are **NINE** questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
  - 1. Choose the correct answer (any seven): 2×7=14
    - (a) The \_\_\_\_ provides pictorial representation of a given problem.
      - (i) algorithm
      - (ji) flowchart
      - (iii) pseudocode
      - (iv) All of the above

COPYRIGHT FESHIVED

- (i) FORTRAN
- (ii) MODEM

- (iii) COBOL
- (iv) ALGOL
- (c) The type cast operator is
  - (i) (type)
  - (ii) cast()
  - (iii) //
  - (iv) " "



The order of convergence in Newton-Raphson method is

Type of Environment in the contract of

and make

Section of the Section

-Made - Pit In Mills

trafficially of

- (i) 2
  - (ii) 3
- (iii) 0
- (iv) 1

(Continued)

(e) If  $x_n$  is the *n*th iterate, then Newton-Raphson formula is

(i) 
$$x_n = x_{n-1} + \frac{f(x_n)}{f'(x_n)}$$

(ii) 
$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}$$

(iii) 
$$x_n = x_{n-1} - \frac{f(x_{n+1})}{f'(x_{n+1})}$$

(iv) 
$$x_n = x_{n-1} - \frac{f(x_n)}{f'(x_n)}$$

(f) A unique polynomial of degree \_\_\_\_ passes through (n+1) data points.

The state of the s

(i) 
$$n+1$$



(iii) n or less

(iv) n+1 or less

- (g) The nth divided differences of a polynomial of the nth degree are
  - (i) constant
  - (ii) variable
  - (iii) equal
  - (iv) unequal



In Newton's forward difference formula what is u?

(i) 
$$u = \frac{x - x_n}{h}$$

(ii) 
$$u = x - x_n$$

(ii) 
$$u = x - x_n$$
  
(iii)  $u = \frac{(x - x_n)^2}{h}$ 

$$\int (iv) u = \frac{x - x_0}{h}$$

- In application of Simpson's  $\frac{1}{3}$ rd rule, the interval h for closer approximation should be
  - (i) even of the convious should be
  - (ii) small
  - (iii) odd
  - (iv) even and small
  - In the geometrical meaning of Euler's (j)algorithm, the curve is approximated as a/an
    - (i) straight line
    - (ii) circle
    - (iii) parabola
    - (iv) ellipse
- Write an algorithm and draw a flow-**2.** (a) chart to convert the length in feet to centimeter.

(Continued)

7

(b) What is high-level language? What are the different types of high-level languages?

7

**3.** What is a flowchart? How is it different from an algorithm?

14

Write a C/C++ program to print all numbers between 1 to n divisible by 7.

7

(b) Define array. Explain different types of array in detail.

7

Evaluate :

~7

$$\Delta\left(\frac{2^x}{(x+1)!}\right);\ h=1$$

(b) Apply Gauss-Seidel iteration method to solve the following equations:

7

$$20x + y - 2z = 17$$
$$3x + 20y - z = -18$$
$$2x - 3y + 20z = 25$$

- 6. The equation  $x^2 + ax + b = 0$  has two real roots  $\alpha$  and  $\beta$ . Show that the method
  - (a)  $x_{k+1} = -\frac{1}{x_k}(ax_k + b)$  converges to a if  $|\alpha| > |\beta|$ .

I = Miggins

7

8AK/345

(Turn Over)



$$x_{k+1} = -\frac{b}{x_k + a}$$
 converges to  $a$  if  $|\alpha| < |\beta|$ .

7

Derive Newton's forward difference interpolation formula.

8

A third degree polynomial passes through the points (0, -1), (1, 1), (2, 1) and (3, -2). Find the polynomial.

6



Evaluate sagna ......

$$\int_{30^\circ}^{90^\circ} \log_{10} \left( \sin x \right) dx$$

by Simpson's one-third rule by dividing the interval into 6 parts.

7

(b) A river is 80 m wide. The depth 'y' of the river at a distance x from one bank is given by following table:

7

| x | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |
|---|---|----|----|----|----|----|----|----|----|
| y | 0 | 4  | 7  | 9  | 12 | 15 | 14 | 8  | 3  |

Find approximately the area of cross-section of the river using Simpson's one-third rule.



Find the solution of following initial value problem by using Euler's method :

7

$$\frac{dy}{dx} + 2y = 0, \ y(0) = 1$$

8AK/345

(Continued)

(b) Solve the boundary value problem

y'' - 64y + 10 = 0; y(0) = y(1) = 0

by the finite-difference method. Compute the value of y(0.5) and compare it with the true value.

le-fui-o beo fin fm: dy = (70+ En) = fm = 10+En JD= 11ENP = JD= DMA : D= 1+G. 1 D= Jot Dap i. 1p- 10+ PDN + P(P-1) 52 P(P-1) (P-N+1) 2 2