DEPARTMENT OF PHARMACY M.I.T., MUZAFFARPUR

AFFILIATED TO ARYABHATTA KNOWLEDGE UNIVERSITY, MITHAPUR, PATNA

PHARMACEUTICS III DEPARTMENT OF PHARMACY NAME OF FACULTY: ABHILASHA GUEST ASSISTANT PROFESSOR

DEPARTMENT OF PHARMACY, M.I.T. MUZAFFARPUR

Contact Details: 9472896774 Email ID: abhilashashanti@gmail.com NAME OF COURSE: PHARMACEUTICS III COURSE CODE (T): 1301 COURSE CODE (P): 1301P SEMESTER:IIIRD ACADEMIC: 2018-2019 COURSE DESCRIPTIONS: PHARMACEUTICS -III

B. PHARM – THIRD SEMESTER

1. Course Syllabus

Module-1

Stoichiometry:Unit processes material and energy balances, molecular units, mole fraction, tie substance, gas laws, mole volume, primary and secondary quantities, equilibrium state, rate process, steady and unsteady states, dimensionless equations, dimensionless formulae, dimensionless groups, differentlypes of graphic representation, mathematical problems.

Module-2

Heat Transfer: Source ofheat, heat transfer, steam and electricity as heating media, determination of requirement of amount of steam/electrical energy, steam pressure, Boiler capacity, Mathematical problemson heat transfer.

Evaporation:Basic concept of phase equilibria, factor affecting evaporation, evaporators, film evaporators, single effect and multiple effect evaporators, Mathematical problems on evaporation

.**Distillation:** Rault's law, phase diagrams, volatility; simple steam and flash distillations, principles of rectification, Mc. Cabe Thiele method for calculations of number of theoretical plates, Azeotropic and extractive distillation. Mathematical problems on distillation.

Drying:Moisture content and mechanism of drying, rate of drying and time of drying calculations; classification and types of dryers, dryers used in pharmaceutical industries and special drying methods. Mathematical

Module-3.

Size Reduction and Size Separation:Definition, objectives of size reduction, factors affecting size reduction, laws governing energy and power requirements of a mills including ball mill, hammer mill, fluid energy milletc

Mixing:Theory ofmixing, solid-solid, solid-liquid and liquid-liquid mixing equipments

Module-4.

Automated Process Control Systems: Process variables, temperature, pressure, flow, level and vacuum and their measurements.Elements of automatic process control and introduction to automatic process control systems. Elements of computer aided manufacturing (CAM).

Reactors and fundamentals of reactors design for chemical reactions.

Recommended Books:

1. Cooper and Gunn's Tutorial Pharmacy Edited by S.J.Carter (CBS Publishers, Delhi)

2. Pharmaceutical Engineering by K.Sanbamurty (New Age International, New Delhi)

3. Chamical Engineering by Badger and Banchero (Mc Graw Hill, New Delhi)

4. Pharmaceutical Dosage forms by Aulton.(Churchill Livingstone, Edinburg)

5. Gennaro, "Remington's The Science & Practice of Pharmacy" (Lippincott William and Wilkins).

2. Program Objectives (POs)

The graduates of the programme will possess:

- 1. The knowledge of core concepts of stoichiometry
- 2. The knowledge of heat transfer, evaporation, distillation and drying
- 3. Brief knowledge about size reduction and size separation and mixing.
 - 4. Brief knowledge about automated process control systems
 - 5. The knowledge of reactors and fundamental of reactors.

3.Course Outcomes (COs)

- 1. Recall The knowledge of heat transfer, evaporation and distillation.
- 2. Gain The knowledge of drying, mixing and size reduction.
- 3. Gain brief knowledge about automated process control systems
- 4. Mapping of COs with Pos

PO	CO1	CO2	CO3	CO4
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				

12		

5. Assessment Methods for Cos

5.1. Theory

S. No	Assessment Tools	Marks	Outcomes
1	Sessional Examination	20	CO1 CO2 CO3
			CO4
2	Assignment	02	CO1 CO2 CO3
			CO4
3	Presentation	02	CO1 CO2 CO3
			CO4
4	Quizzes	01	CO1 CO2 CO3
			CO4
5	Attendance	05	NA
6	University Examination	70	NA

5.2. Practical

S. No	Assessment Tools	Marks	Outcomes
1	Attendance	05	CO1 CO2 CO3
			CO4
2	Experiment valuation	10	CO1 CO2 CO3
			CO4
3	Internal Viva- voce	05	CO1 CO2 CO3

			CO4
4	University Practical Exam	30	CO1 CO2 CO3
			CO4

6. Delivery Methodology

Outcomes	Methods	Supporting Tools
CO 1	Chalk-Talk, Interactive classroom, ICT	Board, Laptop,
	usage, Case study discussion about	Projector, You Tube,
	diseases, Group discussions, Web	WhatsApp, Google,
	based learning	
CO2	Chalk-Talk, Interactive classroom, ICT	Board, Laptop,
	usage, Case study discussion about	Projector, You Tube,
	diseases, Group discussions, Web	WhatsApp, Google,
	based learning	
CO3	Chalk-Talk, Interactive classroom, ICT	Board, Laptop,
	usage, Case study discussion about	Projector, You Tube,
	diseases, Group discussions, Web	WhatsApp Google,
	based learning	
CO4	Chalk-Talk, Interactive classroom, ICT	Board, Laptop,
	usage, Case study discussion about	Projector, You Tube,
	diseases, Group discussions, Web	WhatsApp, Google,
	based learning	

7. Teaching plan

7.1. Theory

Lecture	Date of	Contents
No.	Delivery	
1		Unit process and energy balance
2		Molecular units, mole fraction, mole volume
3		Primary and secondary quantities
4		Steady and unsteady states
5		Graphic representation
6		Mathematical problems of stoichiometry
7		Heat transfer and source of heat
8		Heating media
9		Determination of heating amount
10		Mathematical problems of heat transfer
11		Evaporation introduction and Phase equilibria concept
12		Factors affecting evaporation
13		Classification of evaporators and Film evaporators
14		Single effect and multiple effect evaporator
15		Application of evaporation and mathematical problem
16		Rault's law, phase diagram
17		Volatility
18		Simple, steam and flash distillation
19		Principles of rectification
20		Theoretical plate calculation
21		Azeotropic and extractive distillation
22		Mathematical problems of distillation
23		Moisture content and mechanism of drying
24		Rate and time of drying calculation
25		Classification and types of dryers.

26	Special drying method and mathematical problems
27	Size reduction and separation objective and definition
28	Factors affecting size reduction and laws governing
29	Ball mill and hammer mill
30	Fluid energy mill
31	Theory of mixing and solid –solid mixing equipments
32	Solid –liquid and liquid – liquid mixing equipments
33	Automated process control system- process variables,
	temperature, pressure, flow
34	Level and vaccum and their measurement
35	Elements of automatic process control systems.
36	Elements of computer aided manufacturing (CAM)
37	Reactors design for chemical reactions
38	Fundamentals of reactors design for chemical reactions
39	
40	
41	
42	

7.2. Practical

Exp.	Experiment
No	
1	To determine overall heat transfer coefficient.
2	Determination of rate of evaporation.
3	Experiments based on steam, extractive and azeotropic distillations.
4	Determination of rare of drying, free moisture content and bound

	moisture content.
5	To study the influence of various parameters on the rate of drying
6	Experiments to illustrate principles of size reduction
7	Experiments to illustrate Laws governing energy and power requirements of size Reduction.
8	Experiments to illustrate solid-solid mixing
9	To determine mixing efficiency using different types of mixers
10	
11	
12	