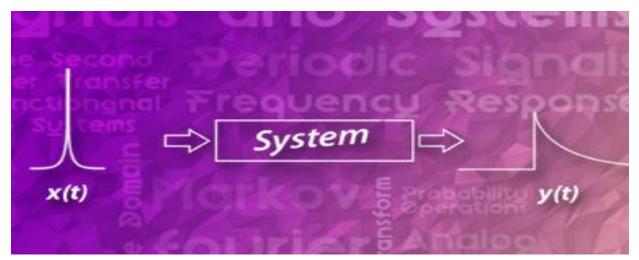
# MUZAFFARPUR INSTITUTE OF TECHNOLOGY MUZAFFARPUR




# **COURSE FILE**

# OF

# SIGNALS & SYSTEM

(Course Code: 031510)



**Faculty Name:** 

## ANKIT KUMAR SINGH

ASSISTANT PROFESSOR, DEPARTMENT OF EE



विज्ञान एवं प्रावैधिकी विभाग Department of Science and Technology Government of Bihar

# CONTENTS

- 1. Cover Page & Content
- 2. Vision of the Department
- 3. Mission of the department
- 4. PEO's and PO's
- 5. Course objectives & course outcomes (CO's)
- 6. Mapping of CO's with PO's
- 7. Course Syllabus and GATE Syllabus
- 8. Time table
- 9. Student list
- 10. Course Handout
- 11. Lecture Plan
- 12. Assignment sheets
- 13. Tutorial Sheets
- 14. Sessional Question Papers
- 15. Question Bank

## **Electrical Engineering Department**

#### **Vision of The Department**

To produce cutting edge Electrical Engineers, innovators, researchers, and entrepreneurs with high human values to serve society, industry, nation and the world.

### **Mission of The Department**

- M1. To create state-of-the-art facilities for under-graduate, post- graduate and R&D work.
- M2. To cater the needs of society with recent technologies, innovative ideas and inculcate ethical responsibilities.
- M3.To develop strong collaborative links with premier industries, institutions and the government agencies.

# Program Educational Objectives (PEOs) of Electrical Engineering Department

- **PEO 1.** Students will be able to engage in life-long learning and research including supportive and responsible roles on multi-disciplinary tasks.
- **PEO 2.** Students will acquire, use and develop skills as required for effective professional and societal practices and leadership quality.
- **PEO 3.** Students will be able to create a new dimension of innovation and entrepreneurship.

**Program Outcomes (POs)** based on Program Educational Objectives (PEOs) of Electrical Engineering Department:

- **PO 1.** Students will be able to apply knowledge of applied mathematics & science in electrical engineering problems.
- **PO 2.** Students will be able to identify, formulate and solve society and industries related problems.
- **PO 3.** Students will be able to apply knowledge to design a system, component or process to meet desired needs within realistic constraints.
- **PO 4.** Students will be able to conduct laboratory experiments and to critically analyze and interpret experimental data.
- **PO 5.** Students will be able to use the recent techniques, skills, and modern tools necessary for engineering practices.
- **PO 6.** Students will be able to understand the impact of engineering problems, solutions in a global and societal context.
- **PO 7.** Students will be able to demonstrate professional and ethical responsibilities.
- **PO 8.** Students will be able to apply leadership quality to work with team in the area of electrical engineering towards the solution of multi-disciplinary tasks.
- **PO 9.** Students will be able to communicate effectively through verbally, technical writing, reports and presentation.
- **PO 10.** Students will be able to develop confidence for self-education and ability to engage in life-long learning.

## **Course Description and Objectives**

This course deals with the basics of signals and systems analysis, different operations on discretetime and continuous-time signals and study of different systems (linear, non-linear, time variant, time-invariant, stable and unstable systems)

#### **Course Outcomes**

At the end of the Course, the students will be able to:

- **CO.1**. Define signals and systems, classify the signals and apply different operations on signal.
- **CO.2**. Explain the Force Voltage analogy and Force Current analogy.
- **CO.3.** Determine Fourier series coefficient and Fourier transforms for different types of signals.
- CO.4. Determine Laplace transforms with their properties by using the concept of ROC.
- **CO.5**. Determine Z transforms with their properties by using the concept of ROC and relate with Laplace transform.

### SIGNALS AND SYSTEMS (EE-031510)

#### **COURSE SYLLABUS**

L-T-P: 3-1-0

Max Marks: 100 Final Exam: 70 Marks Sessional: 20 Marks Internals: 10 Marks.

#### UNIT-I

System and Signal: Definition, classification of systems, standard test signal, properties of system, properties of liner system.

#### UNIT-II

Analogous System: Force voltage analogy, Force current analogy, Mechanical coupling devices, and electromechanical system.

#### UNIT-III

Laplace transformation: Laplace transform of some important function, shift theorem and its application, Laplace transform of periodic functional, analysis of response, initial & final values theorem, response to periodic sinusoidal excitation.

#### UNIT-IV

Analysis of Fourier Methods: Fourier series expansion of periodic functional symmetry condition, exponential form of Fourier series, Fourier integral & Fourier transform, Analysis by Fourier methods, Fast Fourier transform.

#### UNIT-V

Z transformation: Z transform, discrete time, LTI system, solution of difference equation, Application of Z transform to open loop system.

#### **Text Books:**

- 1. Analysis of Linear System by D.K Cheng, Narosa pub. House
- 2. Modeling & Analysis of Liner System by J.P Tiwari. Dhanpat rai & Sons

#### **Reference Books:**

- 1. Signal & system by H.P Hus, Tata McGraw Hill
- 2. Signal & system by I.J. et. at., Tata McGraw Hill

#### GATE SYLLABUS

#### Signals & System

Continuous-time signals: Fourier series and Fourier transform representations, sampling theorem and applications; Discrete-time signals: discrete-time Fourier transform (DTFT), DFT, FFT, Z-transform, interpolation of discrete-time signals; LTI systems: definition and properties, causality, stability, impulse response, convolution, poles and zeros, parallel and cascade structure, frequency response, group delay, phase delay, digital filter design techniques.

## Mapping of PO's with CO's

| Sr. No. | Course Outcome                                                      | PO            |
|---------|---------------------------------------------------------------------|---------------|
| 1.      | <b>CO.1</b> . Define signals and systems, classify the signals and  | PO1, PO2, PO3 |
|         | apply different operations on signal.                               |               |
| 2.      | CO.2. Explain the Force Voltage analogy and Force Current           | PO2, PO3, PO5 |
|         | analogy.                                                            |               |
| 3.      | CO.3. Determine Fourier series coefficient and Fourier              | PO1,PO3, PO5  |
|         | transforms for different types of signals.                          |               |
| 4.      | <b>CO.4</b> . Determine Laplace transforms with their properties by | PO1,PO3, PO5  |
|         | using the concept of ROC.                                           |               |
| 5.      | <b>CO.5</b> . Determine Z transforms with their properties by using | PO3, PO5, PO6 |
|         | the concept of ROC and relate with Laplace transform.               |               |

| Course Outcomes                                                                                                           | PO1 | PO2 | PO3 | PO4 | PO5                   | PO6                   | PO7 | PO8 | PO9 | PO10     |
|---------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----------------------|-----------------------|-----|-----|-----|----------|
| <b>CO.1</b> . Define signals and systems, classify the signals and apply different operations on signal.                  | •   | •   | ✓   |     |                       |                       |     |     |     |          |
| <b>CO.2</b> . Explain the Force<br>Voltage analogy and<br>Force Current analogy                                           |     | ✓   | ✓   |     | ✓                     |                       |     |     |     |          |
| <b>CO.3.</b> Determine Fourier series coefficient and Fourier transforms for different types of signals.                  | ✓   |     | ✓   |     | ✓                     |                       |     |     |     |          |
| <b>CO.4</b> . Determine<br>Laplace transforms with<br>their properties by using<br>the concept of ROC.                    | ✓   |     | ✓   |     | ✓                     |                       |     |     |     |          |
| <b>CO.5</b> . Determine Z transforms with their properties by using the concept of ROC and relate with Laplace transform. |     |     | ~   |     | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> |     |     |     | <b>√</b> |

### TIME TABLE

| DAY/TIME  | 9:00-10:00           | 10:0-11:00      | 11:00-12:00  | 12:00-13:00          | 13:00-<br>14:00 | 14:00-15:00          | 15:00-<br>16:00 | 16:00-<br>17:00 |
|-----------|----------------------|-----------------|--------------|----------------------|-----------------|----------------------|-----------------|-----------------|
| MONDAY    |                      | SIG SYS<br>(EE) |              |                      |                 |                      |                 |                 |
| TUESDAY   |                      |                 | SIG SYS (EE) | SIG SYS (T2)<br>(EE) | L               |                      |                 |                 |
| WEDNESDAY |                      |                 | SIG SYS (EE) |                      | U               |                      |                 |                 |
| THURSDAY  | SIG SYS (T1)<br>(EE) |                 |              |                      | N<br>C          |                      |                 |                 |
| FRIDAY    |                      |                 |              | SIG SYS (T4)<br>(EE) | Н               |                      |                 |                 |
| SATURDAY  |                      |                 |              |                      |                 | SIG SYS<br>(T3) (EE) |                 |                 |

# STUDENT LIST

| S. No. | Roll No. | Name of Students     |
|--------|----------|----------------------|
| 1      | 16E01    | NANDAN KUMAR         |
| 2      | 16E02    | ANJALI KUMARI        |
| 3      | 16E03    | KAUSTUBHA            |
| 4      | 16E04    | RISHABH KUMAR        |
| 5      | 16E05    | AMRITA KUMARI        |
| 6      | 16E06    | SUMIT KUMAR          |
| 7      | 16E07    | RITESH RAJ           |
| 8      | 16E08    | VIPUL MISHRA         |
| 9      | 16E09    | SAMEER KUMAR         |
| 10     | 16E10    | MD SAIFULLAH SADIQUE |
| 11     | 16E11    | PREETI KUMARI        |
| 12     | 16E12    | KULDEEP THAKUR       |
| 13     | 16E13    | SHANTANU KUMAR SINGH |
| 14     | 16E14    | SEEMA KUMARI         |
| 15     | 16E15    | PRIYAM KUMARI        |
| 16     | 16E16    | VANDANA BIHARI       |
| 17     | 16E17    | RAJNANDANI           |
| 18     | 16E18    | SANJAY KUMAR YADAV   |
| 19     | 16E19    | PRAVEEN DIVAKAR      |
| 20     | 16E20    | AMIT KUMAR PANDIT    |
| 21     | 16E21    | CHANDAN KUMAR THAKUR |
| 22     | 16E22    | ALOK KUMAR           |
| 23     | 16E23    | DEVENDRA KUMAR       |
| 24     | 16E24    | ARVIND KUMAR         |
| 25     | 16E25    | AMITESH KUMAR        |
| 26     | 16E26    | VIVEK KUMAR          |
| 27     | 16E27    | VIKASH KUMAR RAY     |
| 28     | 16E28    | ROHIT KUMAR          |
| 29     | 16E29    | OM PRAKASH KUMAR     |
| 30     | 16E30    | RAVI KUMAR           |
| 31     | 16E31    | SANDEEP KUMAR        |
| 32     | 16E32    | DEO ALOK             |
| 33     | 16E33    | BAJRANGI KUMAR       |
| 34     | 16E34    | MANOJ KUMAR SONI     |
| 35     | 16E35    | SANJEEV KUMAR        |

| 36 | 16E36     | NEERAJ KUMAR             |
|----|-----------|--------------------------|
| 37 | 16E37     | SATYAM KUMAR             |
| 38 | 16E38     | PRASHANT GAURAV          |
| 39 | 16E39     | NITISH KUMAR RAJAK       |
| 40 | 16E40     | UJJAWAL KUMAR            |
| 41 | 16E41     | PRABHAT KUMAR            |
| 42 | 16E42     | MD HASIM JILANI          |
| 43 | 16E43     | SHIV CHARAN KUMAR        |
| 44 | 16E44     | ANISH BHARTI             |
| 45 | 16E45     | RAHUL KUMAR              |
| 46 | 16E46     | RAJEEV RANJAN PRASAD     |
| 47 | 16E47     | SHUBHAM KUMAR            |
| 48 | 16E48     | TAHIR QAMAR              |
| 49 | 16E49     | PRASHANT KUMAR           |
| 50 | 16E50     | NAMAN KUMAR              |
| 51 | 16E51     | KESHAV CHANDRA           |
| 52 | 16E52     | SWETA BHARTI             |
| 53 | 16E53     | PRATIK ANAND             |
| 54 | 16E54     | SHAGUFTA ANJUM           |
| 55 | 16E55     | GOLDEN KUMAR             |
| 56 | 16E56     | MURLI MANOHAR            |
| 57 | 16E57     | ARPIT ANAND              |
| 58 | 16E58     | AKSHAT RAJ               |
| 59 | 16E59     | ANJAN KUMAR              |
| 60 | 16E60     | SUMAN KUMAR BHARTIYA     |
| 61 | 16E61     | SAKET                    |
| 62 | 16E62     | RISHABH KUMAR            |
| 63 | 16E63     | SUMAN KUMAR              |
| 64 | 16E64     | SUNITA KUMARI            |
| 65 | 16E65     | NISHANT RAJ              |
| 66 | 16E66     | VIPIN SINGH              |
| 67 | 16E67     | ANKIT RAJ                |
| 68 | 16E68     | GUNJAN KUMAR             |
| 69 | 16E69     | PRATAP CHANDRA CHOUDHARY |
| 70 | 17(LE)E01 | VIVEK KUMAR              |
| 71 | 17(LE)E02 | RITIK KUMAR              |
| 72 | 17(LE)E03 | ANAND RANJAN             |
| 73 | 17(LE)E04 | ABHISHEK KUMAR           |
| 74 | 17(LE)E05 | POONAM KUMARI            |
| 75 | 17(LE)E06 | SAURABH KUMAR JHA        |
| 76 | 17(LE)E07 |                          |

| 77 | 17(LE)E08 | ROHAN RAJ   |
|----|-----------|-------------|
| 78 | 17(LE)E09 | ANAND KUMAR |
| 79 | 17(LE)E10 | MANISH      |

### **Course Plan**

#### 1. <u>Scope and Objectives of the Course</u>

It is a fundamental starting point in the field of electronics and communication engineering, and serves as the basic concepts that other advanced subjects in some electronics and communication engineering subjects are based. It covers the fundamentals of signal and system analysis, focusing on representations of discrete-time and continuous-time signals (singularity functions, complex exponentials and geometrics, Fourier representations, Laplace and Z transforms, sampling) and representations of linear, time-invariant systems (difference and differential equations, block diagrams, system functions, poles and zeros, convolution, impulse and step responses, frequency responses and also discuss Analogous System.

#### 2. <u>Textbooks</u>

- T1. Signals, Systems & Communications B.P. Lathi, BS Publications, 2003.
- T2. Signals and Systems A.V. Oppenheim, A.S. Willsky and S.H. Nawab, PHI, 2nd Edn.
- T3. Signals & Systems- Narayan Iyer and K Satya Prasad, Cenage Pub.
- T4. Control System Engineering- I.J. Nagrath and M.Gopal

#### 3. <u>Reference Books</u>

- R1. Signals & Systems Simon Haykin and Van Veen, Wiley, 2nd Edition.
- R2. Principles of Linear Systems and Signals BP Lathi, Oxford University Press, 2015
- R3. Signals and Systems K Raja Rajeswari, B VisweswaraRao, PHI, 2009
- R4. Fundamentals of Signals and Systems- Michel J. Robert, MGH International Edition, 2008.
- R5. Signals and Systems T K Rawat, Oxford University press, 2011

#### 4. Web Resources

- W1. http://nptel.ac.in/courses/117106114/
- W2. https://www.tutorialspoint.com/signals\_and\_systems

# **Course Plan**

| S. No. | Topics                                                         | Text Book / Reference Book /<br>Other reading material |
|--------|----------------------------------------------------------------|--------------------------------------------------------|
| 1      | Introduction to signals and Definition of Signals &<br>Systems | T1 ,T3,R2                                              |
| 2      | Classification of Signals                                      | T1 ,T3, R2                                             |
| 3      | Classification of Signals                                      | T1 ,T3, R2                                             |
| 4      | Operations on signals                                          | T1 ,T3, R2                                             |
| 5      | Operations on signals                                          | T1 ,T3, R2                                             |
| 6      | Operations on signals                                          | T1 ,T3, R2                                             |
| 7      | Properties of linear system                                    | T1 ,T3, R2                                             |
| 8      | Force voltage analogy                                          | T4, R2                                                 |
| 9      | Force current analogy                                          | T4, R2                                                 |
| 10     | Mechanical Coupling Devices                                    | T4, R2                                                 |
| 11     | Electromechanical System                                       | T4, R2                                                 |
| 12     | Review of Laplace transforms                                   | T1 ,T3, R2                                             |
| 13     | Relation between L.T, and F.T. of a signal                     | T1 ,T3                                                 |
| 14     | Shift theorem and its application                              | T1 ,T3                                                 |
| 15     | Shift theorem and its application                              | T1 ,T3                                                 |
| 16     | Laplace Transform of periodic functional                       | T1 ,T3, R2                                             |
| 17     | Analysis of response                                           | T1 ,T3, R2                                             |
| 18     | Initial & final value theorem                                  | T1 ,T3, R2                                             |
| 19     | Initial & final value theorem                                  | T1 ,T3, R2                                             |
| 20     | Response to periodic sinusoidal excitation                     | T1 ,T3, R2                                             |
| 21     | Representation of Fourier Series , TFS , EFS                   | T1 ,T3, R2                                             |
| 22     | Properties of Fourier series                                   | T1 ,T3, R2                                             |
| 23     | Dirichlet conditions                                           | T1 ,T3                                                 |
| 24     | Trigonometric Fourier Series                                   | Т1 ,Т3                                                 |
| 25     | Exponential Fourier Series                                     | T1 ,T3                                                 |
| 26     | Fourier Transform                                              | T1 ,T3                                                 |
| 27     | Fourier Transform                                              | T1 ,T3                                                 |
| 28     | Properties of Fourier Transforms                               | T1 ,T3                                                 |
| 29     | Properties of Fourier Transforms                               | T1 ,T3, R2                                             |

| 30 | Fourier Transforms of periodic signal                                    | T1 ,T3     |
|----|--------------------------------------------------------------------------|------------|
| 31 | Fast Fourier transform                                                   | T1 ,T3     |
| 32 | Fast Fourier transform                                                   | T1 ,T3     |
| 33 | Difference between CT and DT signals                                     | T1 ,T3     |
| 34 | Representation of DT signals using exponential and sinusoidal components | T1 ,T3     |
| 35 | Periodicity, Concept of Z-transform                                      | T1 ,T3, R2 |
| 36 | Periodicity ,Concept of Z-transform                                      | T1 ,T3, R2 |
| 37 | Properties of ROC                                                        | T1 ,T3, R2 |
| 38 | Properties of Z-transform                                                | T1 ,T3     |
| 39 | Inverse Z-Transform                                                      | T1 ,T3     |
| 40 | Transform of LTI-System Function & Impulse Function                      | T1 ,T3     |
| 41 | Relation between Transfer function & Difference equation                 | T1 ,T3     |
| 42 | Solution of Difference equations using Z-transform                       | T1 ,T3     |

# **Evaluation Scheme:**

| Component 1   | Mid Semester Exam      | 20  |
|---------------|------------------------|-----|
| Component 2   | Assignment Evaluation  | 10  |
| Component 3** | End Term Examination** | 70  |
|               | Total                  | 100 |

\*\* The End Term Comprehensive examination will be held at the end of semester. The mandatory requirement of 75% attendance in all theory classes is to be met for being eligible to appear in this component.

### Lecture plan

| Institute / College Name :     | MIT MUZAFFARPUR        |                |   |
|--------------------------------|------------------------|----------------|---|
| Program Name                   | Electrical Engineering |                |   |
| Course Code                    | 031510                 |                |   |
| Course Name                    | Signals & System       |                |   |
| Lecture / Tutorial (per week): | 4                      | Course Credits | 4 |
| Course Coordinator Name        | Ankit Kumar Singh      | ·              |   |

| Lecture Number | Topics                                                         | Date of Lecture |
|----------------|----------------------------------------------------------------|-----------------|
| 1              | Introduction to signals and Definition of Signals &<br>Systems |                 |
| 2              | Classification of Signals                                      |                 |
| 3              | Classification of Signals                                      |                 |
| 4              | Operations on signals                                          |                 |
| 5              | Operations on signals                                          |                 |
| 6              | Operations on signals                                          |                 |
| 7              | Properties of linear system                                    |                 |
| 8              | Force voltage analogy                                          |                 |
| 9              | Force current analogy                                          |                 |
| 10             | Mechanical Coupling Devices                                    |                 |
| 11             | Electromechanical System                                       |                 |
| 12             | Review of Laplace transforms                                   |                 |
| 13             | Relation between L.T, and F.T. of a signal                     |                 |
| 14             | Shift theorem and its application                              |                 |
| 15             | Shift theorem and its application                              |                 |
| 16             | Laplace Transform of periodic functional                       |                 |
| 17             | Analysis of response                                           |                 |
| 18             | Initial & final value theorem                                  |                 |

| 19 | Initial & final value theorem                                            |
|----|--------------------------------------------------------------------------|
| 20 | Response to periodic sinusoidal excitation                               |
| 21 | Representation of Fourier Series , TFS , EFS                             |
| 22 | Properties of Fourier series                                             |
| 23 | Dirichlet conditions                                                     |
| 24 | Trigonometric Fourier Series                                             |
| 25 | Exponential Fourier Series                                               |
| 26 | Fourier Transform                                                        |
| 27 | Fourier Transform                                                        |
| 28 | Properties of Fourier Transforms                                         |
| 29 | Properties of Fourier Transforms                                         |
| 30 | Fourier Transforms of periodic signal                                    |
| 31 | Fast Fourier transform                                                   |
| 32 | Fast Fourier transform                                                   |
| 33 | Difference between CT and DT signals                                     |
| 34 | Representation of DT signals using exponential and sinusoidal components |
| 35 | Periodicity ,Concept of Z-transform                                      |
| 36 | Periodicity ,Concept of Z-transform                                      |
| 37 | Properties of ROC                                                        |
| 38 | Properties of Z-transform                                                |
| 39 | Inverse Z-Transform                                                      |
| 40 | Transform of LTI-System Function & Impulse<br>Function                   |
| 41 | Relation between Transfer function & Difference equation                 |
| 42 | Solution of Difference equations using Z-transform                       |

#### Department of Electrical Engineering Signals & System(EE-03610)

#### Assignment I

- 1. Define the following:
  - a. Linear system
  - b. Time invariant system
  - c. Stable system
  - d. Causal system
  - e. Memory less system
  - f. Invertible system
- 2. Differentiate between following:
  - a. Energy and power signal
  - b. Symmetric and antisymmetric signal
  - c. Periodic and aperiodic signal
  - d. Continuous time and discrete time signal
  - e. Force-voltage analogy and force-current analogy

### Assignment II

- 1. Write the Dirichlet's conditions for Fourier series
- 2. Differentiate between Fourier series and Fourier transform
- 3. Explain the concept of region of convergence (ROC) for Laplace transforms
- 4. Explain the Scaling and Frequency shifting properties of Laplace transform

### Assignment III

- 1. Explain the concept of ROC for Z Transforms
- 2. Explain the relation between Laplace, Fourier and Z transforms
- 3. Write short notes
  - a. Initial and final value theorem of Laplace transform
  - b. Initial and final value theorem of Z- transform

# **QUESTION BANK**

# Code : 031610

# B.Tech 6th Semester Exam., 2015

|               | SIGNALS AND                | SYSTEMS                    | www.akubihar.com |
|---------------|----------------------------|----------------------------|------------------|
|               | SIGINIES MID               | 0101010                    | ak               |
| Time : 3 1    | nours                      | Full Marks : 70            | ubil             |
| Instruction   | 15 :                       |                            | har.c            |
|               | estions carry equal        | marks.                     | 0Ш               |
| (i) There     | are NINE question          | s in this paper.           |                  |
| 🔊 (iii) Atten | pt <b>FIVE</b> questions i | n all                      |                  |
|               | tion No. 1 is compu        |                            |                  |
| 1. Ans        | wer any seven of t         | he following questions :   |                  |
| (a)           | Define causal sys          |                            |                  |
| (b)           | What is continuou          | us time signal?            | WW               |
| (c)           | Write the condition        | n of existence for Laplace | www.akubihar.com |
| (d)           | Define Fourier tra         | ansform of a sequence.     | ıbihı            |
| (e)           | (e) What is DTFT pair?     |                            |                  |
| <i>i</i>      | What is Fourier            | integral?                  | DHI              |
| (g)           | ma at are analog           | ous systems?               |                  |
| 121           | 50 <b>0/606</b>            | (Turn Over )               |                  |

| · .              |    | (h)        | Find the z-transform of discrete-time unit impulse $\delta(n)$ .                                                                                                               | 5 |
|------------------|----|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| ų                |    | (1)        | What is z-transform of $A\delta(n - m)$ ?                                                                                                                                      |   |
| WW.a             |    | 0)         | Define region of convergence (ROC).                                                                                                                                            |   |
| ıkut             | 2. | (a)        | Sketch the following signal :                                                                                                                                                  |   |
| oiha             |    |            | x(t) = A[U(t + a) - U(t - a)]  for  a > 0                                                                                                                                      |   |
| www.akubihar.com |    |            | Also determine whether the given signal is a power signal or an energy signal or neither.                                                                                      |   |
|                  |    | (b)        | Show that a system with excitation $x(t)$ and<br>response $y_i(t)$ described by $y_i(t) = x(t/2)$ is<br>linear, time-variant, non-causal.<br>Compare energy and power signals. | ć |
|                  | 3. | J)         | Compare energy and power signals.                                                                                                                                              |   |
| 4                |    | į į-I      | What are the elementary signals? Explain with suitable diagrams.                                                                                                               |   |
| /ww.ak           | 4. | <i>(a)</i> | Compare force-voltage analogy with force-<br>current analogy.                                                                                                                  |   |
| www.akubihar.com |    | (b)        | Obtain the solution of the differential<br>equation given below using Laplace<br>transform :                                                                                   |   |
| om               |    |            | $2\frac{dx}{dt} + 8x = 10$                                                                                                                                                     |   |

Given 
$$x(0+) = 2$$
.

-500/606

( Continued )

(3)

5. (a) The Laplace transform of f(t) is given by

$$F(s) = \frac{4}{s(s+2)}$$

Find the final value using the final-value theorem and verify the result by determining f(t) using inverse Laplace transform.

- (b) Find the inverse Fourier transform of S(u - u<sub>0</sub>). -
- 6. (a) Write the Dirichlet's conditions for Fourier series.
  - (b) Obtain Fourier series representation of the periodic rectangular waveform which is defined as

0 for t = (-T/2, -T/4)

- x(t) = A for t ∈ [-T/4, T/4] 0 for t ∈ (T/4, T/2)
  (a) Explain the concept of negative frequency. Find the Fourier transform of the everlasting sinusoid cosw<sub>0</sub>t.
  (b) Explain the linearity and time-scaling properties of Fourier transform. 7. (a) Explain the concept of negative
  - properties of Fourier transform.

AK15-500/606

(Turn Over)

www.akubihar.com

|                                          | · · .                                  | ( ~ )                                                                                         |    |
|------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------|----|
| www.ErForum.Net                          | Code : 031610                          |                                                                                               | Pa |
|                                          | 1 N.                                   | (c) The system $y(t) = e^{x(t)}$ is                                                           |    |
| B.Tech 6th Ser                           | nester Exam., 2016                     | (i) stable and causal                                                                         | ~  |
| SIGNALS                                  | AND SYSTEMS                            | (ii) non-causal and stable                                                                    |    |
| Time : 3 hours                           | Full Marks : 70                        | (iii) unstable and causal                                                                     |    |
|                                          |                                        | (iv) unstable and non-causal                                                                  |    |
| Instructions :<br>(i) The marks are indi | cated in the right-hand margin.        | (d) The system represented by                                                                 |    |
| (ii) There are <b>NINE</b> qu            | estions in this paper.                 | $h(n) = (0.99)^n u(n+2)$                                                                      |    |
| (iii) Attempt FIVE ques                  | tions in all                           | is                                                                                            |    |
| (iv) Question No 1 is o                  |                                        | (i) unstable because it is an FIR<br>system                                                   |    |
|                                          | ct answer (any seven) : 2×7=14         | (ii) stable because it is an IIR system                                                       |    |
| value of the                             | te the delta function. The<br>integral | (iii) unstable because it does not obey<br>BIBO stability criteria                            |    |
|                                          | $s(t)\cos\left(\frac{3t}{2}\right)dt$  | (iv) stable because it obeys BIBO<br>stability criteria                                       |    |
| is<br>(i) 1<br>(ii) 0                    | (ii) -1<br>(iv) π / 2                  | (e) The impulse response of a system is<br>$h(t) = \delta(t - 0.5)$ . If two such systems are |    |
| (b) If a signal $f$                      | (f) has energy $E$ , the energy        | cascaded, the impulse response of the<br>overall system will be                               |    |
| of signal f (                            | 21) is equal to<br>E                   | ( 0.58(1-0.25)                                                                                |    |
| (i) E                                    | (ii) $\frac{E}{2}$                     | (iii) δ(t−0·25)                                                                               |    |
| (iii) 2E                                 | (iv) 4E                                | (iii) δ(t-1)                                                                                  |    |
|                                          | man Ount 1                             | (iv) $0.5\delta(t-1)$                                                                         |    |

FR DAK 6/678

(Turn Over)

#### (3)

(f) If x(t) is odd, then its Fourier series coefficients must be

(i) real and odd

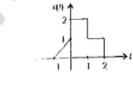
www.ErForum.Net

- (ii) imaginary and odd
- (iii) real and even
- (iv) imaginary and even
- The Laplace transform of a unit ramp (g), function starting at t = a is

(i) 
$$\frac{1}{(s+a)^2}$$
(ii) 
$$\frac{e^{-as}}{(s+a)^2}$$
(iii) 
$$\frac{e^{-as}}{s^2}$$
(iii) 
$$\frac{a}{2}$$

 $\frac{2(s+1)}{s^2+2s+5}$ (h) then  $f(0^+)$  and If L[f(t)]f(...) are given by (i) 0, 2 respectively 2, 0 respectively (iii) (iii) 0, 1 respectively (iv) 2, 0 respectively

If the impulse response of a discrete time system is  $h(n) = -5^n u(-n-1)$ , then the system function H(z) is equal to  $(t) = \frac{-2}{2-5}$  and the system is stable (a)  $\frac{z}{z-5}$  and the system is stable (iii)  $\frac{-z}{z-5}$  and the system is turn table (iii)  $\frac{z}{z-5}$  and the system is instable the output of discrete LTI system is . ways identical to the input signal, nen the unit impulse response h(n) is at unit step.


(4)

- unit impulse r G. I
- (m) all ones
- nul ramp

678

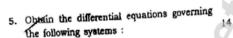
3

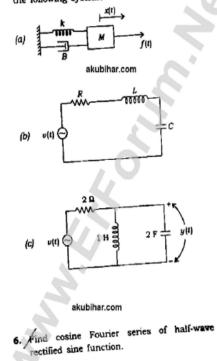
For the signal x(t) shown in the figure below, find the signals (i) x(t-2),  $x_{1} \in (2t+3)$ , (iii)  $x\left(\frac{3}{2}t\right)$  and (iv) x(-t+1): 7





( Turn Over


FB Page: https://www.facebook.com/AKUforum/


www.ErForum.Net

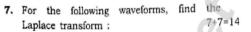
Page 2

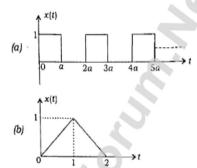
| www.ErForum.Net (5)                                                                                             |                 | (6)                                                                    | Pag                           |
|-----------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------------------------------------|-------------------------------|
| <ul> <li>(b) Find whether the following periodic or not :</li> <li>(i) x(t) = 2cos(10t+1) - sin(10t)</li> </ul> |                 | (b) For each of the fol<br>determine whether the<br>invariant :        |                               |
| (ii) $\cos 60\pi t + \sin 50\pi t$<br>(iii) $2u(t) + 2\sin 2t$<br>(iv) $3\cos 4t + 2\sin 2\pi t$                | 2.              | (i) $y(t) = tx(t)$<br>(ii) $y(t) = x(t)\cos(50\pi t)$                  | 2                             |
| (v) $u(t) - \frac{1}{2}$                                                                                        | S. I            | $(iii)  y(t) = x(t^2)$                                                 | 2                             |
| (vi) $\sin^2 t$<br>3. (a) Check whether the follow                                                              | ing systems     | (iv) $y(t) = x(-t)$<br>(v) $y(t) = e^{x(t)}$                           |                               |
| are linear or not :<br>(i) $\frac{dy}{dt} + 3ty(t) = t^2 x(t)$                                                  | 7               | (vi) y(n) = x(2n)<br>(vii) y(n) = x(n) + nx(n - 1)                     | 1)                            |
| $\begin{aligned} (ii)  \frac{dy(t)}{dt} + 2y(t) &= x^2(t) \\ (iii)  y(t) &= \x(t) dt \end{aligned}$             | •               | $(viii) y(n) = x^2 (n-1)$                                              |                               |
| $(iu) \frac{dy}{dt} + 2y(t) = x(t) \frac{dx(t)}{dt}$ $(u)  y(n) = Ax(n) + B$                                    |                 | (a) Prove that the output<br>time system can be<br>a weighted sum of s | represented as                |
| full $y(n) = 2x(n) + \frac{1}{x(n-1)}$                                                                          |                 | (b) Obtain the convolution                                             |                               |
| FB <b>AK16/67A</b> www.facebook.com/AKUforum/                                                                   | (Turn Over)     | sequence :<br>x(n) = u(n) - u(n-7), h(n) =                             | 0.53                          |
|                                                                                                                 | www.ErForum.Net | 5/670                                                                  | (Continued )<br>www.ErForum.N |

#### www.ErForum.Net (7)






FB Page High Street Www.facebook.com/AKUforum/


www.ErForum.Net

( Turn Over )

14

(8)

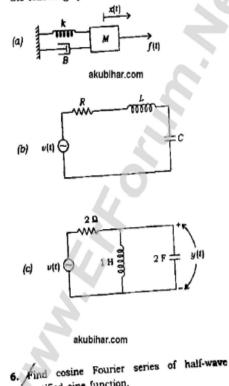




<sup>8.</sup> Using Laplace transform, solve the following differential equation : 14

$$\frac{d^3 y(t)}{dt^3} + 7 \frac{d^2 y(t)}{dt^2} + 16 \frac{dy(t)}{dt} + 12 y(t) = x(t)$$
  
if  $\frac{dy(0^-)}{dt} = 0; \quad \frac{d^2 y(0^-)}{dt^2} = 0$ 

 $y(0^{\circ}) = 0$  and  $x(t) = \delta(t)$ 


9. Find the impulse response and step response for the following system : 14  $y(n) - \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = x(n)$ 

\*\*\*

AK16--550/678

www.ErForum.Net

5. Obtain the differential equations governing the following systems :



- 8. Using Laplace transform, solve the following differential equation :  $\frac{d^3y(t)}{dt^3} + 7\frac{d^2y(t)}{dt^2} + 16\frac{dy(t)}{dt} + 12y(t) = x(t)$ if
  - $\frac{dy(0^{-})}{dt} = 0; \quad \frac{d^2y(0^{-})}{dt^2} = 0$  $y(0^{\circ}) = 0$  and  $x(t) = \delta(t)$ 9. Find the impulse response and step response for the following system : 14  $y(n) - \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = x(n)$ \*\*\*

FB Pack Add Streebook.com/AKUforum/

rectified sine function.

www.ErForum.Net

( Turn Over )

14

www.ErForum.Net

(8)

3a

2

4a5a

2a

7. For the following waveforms,

Laplace transform :

x(t)

a

1

xíť

(a)

(b)

AK16---550/678

Page 4

7=14

14

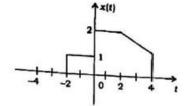
find the

|                        |                                                                                                                        |            | (2)                                                                                  |
|------------------------|------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------|
|                        | Code : 031510                                                                                                          |            | akubihar.com                                                                         |
| 1 <u>00</u> 000        | akuhihar com                                                                                                           | (d)        | For a periodic signal                                                                |
| B.T                    | ech 5th Semester Exam., 2017                                                                                           | v(t) =     | $30\sin 100t + 10\cos 300t + 6\sin (500t + \pi/the fundamental frequency in rad/t$   |
|                        | SIGNALS AND SYSTEM                                                                                                     |            | is                                                                                   |
| Time : 3<br>Instructio | hours Full Marks : 70                                                                                                  | (e)        | A discrete time system has impulse<br>response $h(n) = 2^n u(n-4)$                   |
| (i) The                | marks are indicated in the right-hand margin                                                                           |            | Write Yes' if the system is stable or No<br>if the system is not stable.             |
| (m) Atter              | e are NINE questions in this paper.<br>npt FIVE questions in all                                                       | Ø          | The impulse response of a system is<br>h(t) = tu(t)                                  |
|                        | stion No. 1 is compulsory. akubihar.com<br>in the blanks of the following (any                                         |            | For an input of $u(t-2)$ the output<br>is akubihar.com                               |
| 360                    | en): 2×7-14<br>The lengths of two discrete time                                                                        | (g)        | The average power in the signal<br>$s(t) = 10\cos(20\pi t - \pi/2) + 6\sin(15\pi t)$ |
|                        | sequences $x_1(n)$ and $x_2(n)$ are 5 and 7,<br>respectively. The maximum length of a<br>sequence $x_1(n) * x_2(n)$ is | (11)       | is<br>$\int_{-r}^{r} \delta(t) dt =$                                                 |
| (ው)                    | For a signal $x(f)$ , the Fourier transform<br>is $X(f)$ . Then the inverse Fourier<br>transform of $X(3f+2)$ is       | (1)        | The ROC of Laplace transform does no<br>contain any                                  |
| (c)                    | Two discrete time systems with impulse<br>responses                                                                    | Ø          | Z-transform is used for time<br>signal. akubihar.com                                 |
|                        | $h_1[n] = \delta[n-1]$ and $h_2[n] = \delta[n-2]$                                                                      | 2. Defi    | ne the following : 2                                                                 |
|                        | are connected in cascade. The overall<br>impulse response of the cascaded<br>system is                                 | (a)<br>(b) | Stability<br>Causality                                                               |
| BAK/53                 | akubihar.com (Turn Over)                                                                                               |            | Random signal (Conti                                                                 |

8AK/53

- (3)
- akubihar.com
- (d) Time-variant system
- (e) Linear system
- (1) Delta function
- (g) Memoryless system
- 3. (a) Consider the system  $y[n] = 2 \times [n^2]$ . Determine whether it is memoryless, causal, linear and time-invariant. 7
  - (b) Determine the average power of the given signal x(t). akubihar.com 7 ↑x(t)

- 4. A continuous time signal x(t) is shown in the figure. Sketch the following signals : 2×7=14
  - (a) x[3-t] akubihar.com
  - (b) x(4t+1)
  - (c) [x(t) + x(-t)]u(t)
  - (d)  $[\delta(t+1) + \delta(t-1)] x(t)$
  - (e) x(t)x(t-5)


8AK/53

(Turn Over)

(g) x(2t-5)

x(1) 8(t-3)

0



5. (a) (i) Find the inverse Fourier transform of akubihar.com

$$X(\omega) = \frac{1}{2 - \omega^2 + j3\omega}$$

(ii) Consider a causal LTI system with frequency response

$$H(j\omega)=\frac{1}{j\omega+3}$$

For a particular input x(t) this system is observed to produce the output  $y(t) = e^{-3t}u(t) - e^{-4t}u(t)$ . Determine x(t). akubihar.com

(b) Find the inverse z-transform of

$$X(z) = \frac{z}{|z| > 2}$$

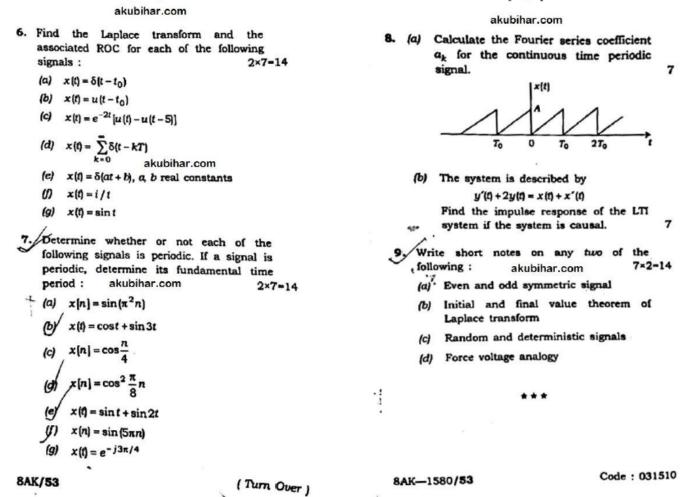
$$x_{12} = \frac{1}{z(z-1)(z-2)^2}$$

8AK/53

2

·. ·

 $\mathbf{A}^{-}$ 


A

( Continued )

7

#### (5)





# Code: 031510

# B.Tech 5th Semester Examination, 2016

Signals and System

Time : 3 hours

Full Marks : 70

#### Instructions :

(i) There are Nine Questions in this paper.

(ii) Attempt Five questions in all.

(iii) Question No. 1 is compulsory.

(iv) All the questions carry equal marks.

 $\frac{1}{2}$ . Fill in the blanks of the following (any seven).  $2 \times 7 = 14$ 

(a) The z-transform of the sequence x[n] is given by

 $X(z) \frac{1}{(1-2z^{1})^{2}}$ , with the region of convergence |z| > 2. Then, x[2] is......

100)

ł

P.T.O.

#### www.akubihar.com

(b) The input output relationship of a causal stable LTI system is given as y[n] = α y [n-1] + β × [n] If the impulse response h[n] of this system satisfies the condition

 $\sum_{n=0}^{\infty} h[n] = 2$ , the relationship between  $\alpha$  and  $\beta$  is .....

- (d) For a periodic signal  $v(t) = 30 \sin 100t + 10 \cos 300t + 6 \sin (500t + \pi/4)$ . the fundamental frequency in rad/s is .....
- (e) A discrete time system has impulse response  $h(n)=2^{n}u(n-2)$ , whether the system is stable or not **not**
- (f) The impulse response of a system is h(t) = t u(t). For an input of u(t-1) the output is .....
- (g) The average power in the signal  $s(t) = 8 \cos (20\pi t \pi/r) + 4\sin (15\pi t)$  is.....
- (h) Fourier series is preferred for . P. 41. odf. signal.

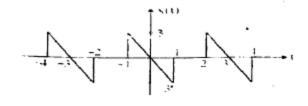
Code : 031510

2

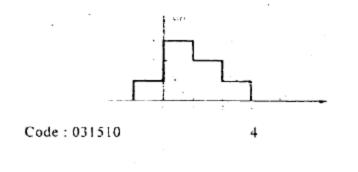
www.akubihar.com

- (i) The lengths of two discrete time sequences x<sub>1</sub>(n) and x<sub>2</sub>(n) are 4 and 5, respectively. The maximum length of a sequence x<sub>1</sub>(n)\*×2(n) is .....
- (j) For a stable LTI system, bounded input always provide bounded output.

2×7=14


Define the following :

(a) Stability


3

- (b) Causality
- (c) Random Signal
- (d) Time variant system
- (e) Linear system
- (f) Delta function
- (g) Memory less system
- 3. (a) Consider the system y(t) = 2 × (t) +3. Determine whether it is Memory less, Causal, Linear and Time invariant.
   7
  - (b) Determine the average power of signal x(t). 7

| Code 031510 | 3 | P.T.O. |
|-------------|---|--------|
|-------------|---|--------|



- A continuous time signal x (t) is shown in figure. Sketch the following signals. 2×7=14
  - (a) x(3-i)
    - (b) x (4t+1)
    - (c) [x(t) + x(-t)] u(t)
    - (d)  $[\delta(t+1)+\delta(t-1)]x(t)$
    - (e) x (1) x (1-5)
    - (f)  $x(t)\delta(t-3)$
  - (g) x(21-5)



www.akubihar.com

(a) 
$$x [n] = sin (\pi^2 n)$$
  
(b)  $x (t) = cost + sin 3t$   
(c)  $x [n] = cos \frac{n}{4}$   
(d)  $x[n] = cos^2 \frac{\pi}{8} n$   
(e)  $x (t) = sin t + sin 2t$   
(f)  $x(n) = sin (5\pi n)$   
(g)  $x(t) = e^{-i3\pi - t}$   
8/ (a) Calculate the Fourier series coefficient  $a_k$  for the continuous time periodic signal. 7  
 $x(t) = \begin{cases} 1.5, & 0 \le t < 1 \\ -1.5, & 1 \le t < 2 \end{cases}$ 

With fundamental frequency  $\omega_0 = \pi$ .

(b) Given

 $^{\prime}$ 

$$X(z) = \frac{z(z-4)}{(z-1)(z-2)(z-3)}$$

(a) State all possible regions of convergence.

6

(b) For which ROC the X (z) is z-transform of a causal sequence.

www.akubihar.com

9/ Write short notes on any two:  $7 \times 2 = 14$ 

(a) Properties of convolution

(b) Initial and Final value theorem of Laplace transform

\*\*\*

- (c) Energy and power signals
- (d) Force voltage analogy

7

7

Code : 031510

7


#### TUTORIAL

#### **Department of Electrical Engineering** Signals & System (EE-031610)

1. For a periodic signal fundamental frequency in  $x(t) = 30 \sin 100t + 10 \cos 300t + 6 \sin (500t + 10)$  $\pi$  / 4), in the rad /s is

(B) 300

- (A) 100
- (C) 500 (D) 1500
- 2. Which one of the following statements is NOT TRUE for a continuous time causal and stable LTI system?
  - (A) All the poles of the system must lie on the left side of the j $\omega$  axis
  - (B) Zeros of the system can lie anywhere in the s-plane
  - (C) All the poles must lie within |s| = 1
  - (D)All the roots of the characteristic equation must be located on the left side of the j $\omega$  axis.
- 3. Assuming zero initial condition, the response v(t) of the system given below to a unit step u(t)is

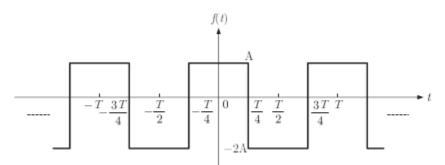


(A) 
$$u(t)$$
 (B)  $t u(t)$   
(C)  $\frac{t^2}{2}u(t)$  (D)  $e^{-t}u(t)$ 

- 4. The impulse response of a continuous time system is given by  $h(t) = \delta(t-1) + \delta(t-3)$ . The value of the step response at t=2 is
  - (D) 3 (A) 0 **(B)** 1 (C) 2
- 5. The unilateral Laplace transform of transform of f(t) is  $\frac{1}{S^2 + S + 1}$ . The unilateral Laplace of tf(t) is

(A) 
$$-\frac{S}{\left(S^{2}+S+1\right)^{2}}$$
  
(B)  $-\frac{2S+1}{\left(S^{2}+S+1\right)^{2}}$   
(C)  $\frac{S}{\left(S^{2}+S+1\right)^{2}}$   
(D)  $\frac{2S+1}{\left(S^{2}+S+1\right)^{2}}$ 

6. If x  $[n] = (1/3)^{|n|} - (1/2)^n u [n]$ , then the region of convergence (ROC) of its z-transform in the zplane will be


(A) 
$$\frac{1}{3} < |Z| < 3$$
 (B)  $\frac{1}{3} < |Z| < \frac{1}{2}$  (C)  $\frac{1}{2} < |Z| < 3$  (D)  $\frac{1}{3} < |Z|$ 

7. The Fourier transform of a signal h (t) is H (j $\omega$ ) = (2 cos $\omega$ ) (sin 2 $\omega$ ) /  $\omega$ . The value of h (0) is (A) 1/4(B) 1 / 2 (C) 1 (D) 2

- 8. Let y[n] denote the convolution of h[n] and g[n], where  $h[n] = (1/2)^n u[n]$  and g[n] is a causal sequence. If y[0] = 1 and y[1] = 1/2, then g[1] equals
  - (A) 0 (B) 1/2 (C) 1 (D) 3/2

9. The trigonometric Fourier series of an even function does not have the
(A) dc term
(B) cosine terms
(C) sine terms
(D) odd harmonic terms

- 10. A system is defined by its impulse response  $h(n) = 2^n u(n-2)$ . The system is (A) stable and causal (B) causal but not stable
  - (C) stable but not causal (D) unstable and non-causal
- 11. The trigonometric Fourier series for the waveform f (t) shown below contains



(A) only cosine terms and zero values for the dc components

(B) only cosine terms and a positive value for the dc components

(C) only cosine terms and a negative value for the dc components

(D) only sine terms and a negative value for the dc components

- 12. The Fourier series of a real periodic function has only cosine terms if it is even
  - (P) Cosine terms if it is even
  - (Q) Sine terms if it is even
  - (R) Cosine terms if it is odd
  - (S) Sine terms if it is odd

Which of the above statements are correct?

- (A) P and S (B) P and R
- $(C) \ Q \ and \ S \quad (D) \ Q \ and \ R$

13. The input and output of a continuous time system are respectively denoted by x(t) and y(t). Which of the following descriptions corresponds to a causal system?

(A)
$$y(t) = x(t-2) + x(t+4)$$
  
(B)  $y(t) = (t-4)x(t+1)$   
(C) $y(t) = (t+4)x(t-1)$   
(D) $y(t) = (t+5)x(t+5)$ 

|                                             |                                   | e                                         |                                                     |
|---------------------------------------------|-----------------------------------|-------------------------------------------|-----------------------------------------------------|
| (A) odd syr                                 | nmetry                            |                                           | (B) even symmetry                                   |
| (C) conjugate symmetry                      |                                   |                                           | (D) no symmetry                                     |
| 15. If $F(s) = \frac{\omega}{s^2 + \omega}$ | $\frac{1}{w^2}$ then the value of | of $\lim_{t\to\infty} f(t)$               |                                                     |
| (A) cannot                                  | be determined                     |                                           | (B) is zero                                         |
| (C) is unity                                |                                   |                                           | (D) is infinite                                     |
| 16. The z -transfor                         | m of a signal is give             | en by $C(z) = \frac{z^{-1}(1-z)}{4(1-z)}$ | $\left(\frac{z^{-4}}{1}\right)^2$ . Its final value |
| (A)1 / 4                                    |                                   |                                           | (B) zero                                            |
| (C) 1.0                                     |                                   |                                           | (D) infinity                                        |
| 17. If a signal f (t)                       | has energy E , the e              | energy of the signal f                    | (2t) is equal to                                    |
| (A) 1                                       | (B) E / 2                         | (C) 2E                                    | (D) 4                                               |

14. The Fourier transform of a real valued time signal has

described 18. Α causal LTI system is the difference equation by  $2y[n] = \alpha y[n-2] - 2x[n] + \beta x[n-1]$ . The system is stable only if

is

(B)  $|\alpha| > 2, |\beta| > 2$ (A)  $|\alpha| = 2, |\beta| < 2$ (C)  $|\alpha| < 2$ , any value of  $\beta$ (D)  $|\beta| < 2$ , any value of  $\alpha$ 

19. Consider the sequence part of the sequence is x [n] = [-4 - j51 + j25]. The conjugate antisymmetric of the sequence is

| (A) [- 4 - j2.5, j2, 4 - j2.5] | (B) [- j2.5, 1, j2.5] |
|--------------------------------|-----------------------|
| (C) [-j2.5, j2, 0]             | (D) [-4, 1, 4]        |

20. The Fourier transform of a conjugate symmetric function is always

(C) Real (D) Conjugate symmetric

21. Match the following and choose the correct combination.

Group 1

E. Continuous and aperiodic signal

F. Continuous and periodic signal

- G. Discrete and aperiodic signal
- H. Discrete and periodic signal

#### Group 2

1. Fourier representation is continuous and aperiodic

2. Fourier representation is discrete and aperiodic

3. Fourier representation is continuous and periodic

4. Fourier representation is discrete and periodic

(A) E - 3, F - 2, G - 4, H - 1

- (B) E 1, F 3, G 2, H 4
- (C) E 1, F 2, G 3, H 4
- (D) E 2, F 1, G 4, H 3

22. The power in the signal  $s(t) = 8\cos(20\pi - \pi/2) + 4\sin(15\pi t)$  is

| (A) 40 | (B) 41            | (C) 42 | (D) 82 |
|--------|-------------------|--------|--------|
| (      | $(\underline{=})$ | (0).=  | (2)01  |

23. The type of systems which are characterized by input and the output quantized at certain levels are called as

| (A) Analog                                                                                                                                                     | (B) Discrete                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| (C) Continuous                                                                                                                                                 | (D) Digital                                                                                    |
| <ul><li>24. A system which is linear is said to obey the rules of</li><li>a) scaling</li><li>c) both scaling and additivity</li></ul>                          | b) additivity<br>d) homogeneity                                                                |
| <ul><li>25.A time invariant system is a system whose output</li><li>a) increases with a delay in input</li><li>c) remains same with a delay in input</li></ul> | <ul><li>b) decreases with a delay in input</li><li>d) vanishes with a delay in input</li></ul> |
| <ul><li>26. All causal systems must have the component of</li><li>a) memory</li><li>c) stability</li></ul>                                                     | <ul><li>b) time invariance</li><li>d) linearity</li></ul>                                      |
| <ul> <li>27. y(t) = sin(x(t-1)) : Comment on its memory aspects.</li> <li>a) Having memory</li> <li>c) Memoryless system</li> </ul>                            | <ul><li>b) Needn't have memory</li><li>d) Time invariant system</li></ul>                      |
| 28. Construct the inverse system of $y(t) = 2x(t)$<br>a) $y(t) = 0.5x(t)$ b) $y(t) = 2x(t)$ c) $y(2t) = x(t)$                                                  | d) $y(t) = x(2t)$                                                                              |

29.Comment on the causality of y[n] = x[-n]. a) Time invariant b) Causal c) Non causal d) Time varying 30. y(t) = x(t-2) + x(2-t). Comment on its causality: a) Causal b) Time variant c) Non causal d) All of the mentioned 31.Comment on the causality of  $y[n] = n^*x[n]$ . a) Time invariant b) Time varying c) Non causal d) Causal 32.Comment on the linearity of  $y[n] = n^*x[n]$ . b) Only additive a) Linear c) Not scalable d) Non linear 33. Which of the following systems is linear? a) y(t) = sin(x(t))b) y(t) = log(x(t))c) y(t) = cos(x(t))d) y(t) = dx(t)/dt34. Which of the following systems is stable? a) y(t) = log(x(t))b) y(t) = exp(x(t))c) y(t) = sin(x(t))d) y(t) = tx(t) + 135. Which of the following systems is time invariant? a) y(t) = x(2t) + x(t)b) y(t) = x(t) + x(1-t)c) y(t) = -x(t) + x(1-t)d) y(t) = x(t) + x(t-1)36. Which of the following systems is memoryless? b) y(t) = x(t) + 2x(t)a) y(t) = x(2t) + x(t)c) y(t) = -x(t) + x(1-t)d) y(t) = x(t) + 2x(t+2)37. For what value of k, will the following system be time invariant? y(t) = x(t) + x(kt) - x(2t) + x(t-1)a) 1 b) 2 c) 3 d) 2.5 38. Is the function y[n] = y[n-1] + x[n] stable in nature? a) It is stable b) It is unstable d) None of the mentioned c) Both stable and unstable 39. Comment on the causality of the following discrete time system: y[n] = x[-n]. a) Causal b) Non causal c) Both Casual and Non casual d) None of the mentioned 40. Comment on the time invariance of the following discrete system: y[n] = x[2n+4]. b) Time variant a) Time invariant d) None of the mentioned c) Both Time variant and Time invariant 41. Is the system  $y[n] = x^2[n-2]$  linear? (yes/no) 42. Is the above system, i.e  $y[n] = x^2[n-2]$  time invariant? (yes/no)