MUZAFFARPUR INSTITUTE OF TECHNOLOGY, MUZAFFARPUR

COURSE FILE OF STEAM POWER SYSTEM

Faculty Name: NIBHA KUMARI
ASSISTANT PROFESSOR, DEPARTMENT OF MECHANICAL ENGINEERING

CONTENTS

- 1. Cover Page & Content
- 2. Vision of the Department
- 3. Mission of the department
- 4. PEO's and PO's
- 5. Course objectives & course outcomes (CO's)
- 6. Mapping of CO's with PO's
- 7. Course Syllabus and GATE Syllabus
- 8. Time table
- 9. Student list
- 10. Course Handout
- 11.Lecture Plan
- 12. Assignment sheets
- 13. Tutorial Sheets
- 14. Sessional Question Papers
- 15. Old End Semester Exam (Final Exam) Question Papers
- 16. Question Bank
- 17. Power Point Presentations
- 18. Lecture Notes
- 19. Reference Materials
- 20. Results
- 21. Result Analysis
- 22. Quality Measurement Sheets
- a. Course End Survey
- b. Teaching Evaluation

Department of Mechanical Engineering

Vision

• To strengthen the region through imparting superior quality technical education and research; which enables the fulfillment of industrial challenge and establish itself as a Centre of Excellence in the field of Mechanical Engineering.

Mission

- To build an academic environment of teaching and lifelong learning for students to make them competitive in context with advance technological, economical and ecological changes.
- To enable the students to enhance their technical skills and communications through research, innovation and consultancy projects.
- To share and explore the accomplishments through didactic, enlightenment, R & D programs with technical institution in India and abroad.

Mechanical Engineering Program Educational Objectives

After 4 year of graduation a B.TECH (ME) graduate would be able to

- Graduates will spread and enhance their technical capability and proficiency through vital domain of economical, environmental and social concerns affiliated with the mankind and industry.
- Graduates will able to work professionally with modern methods in the area of Thermal, Mechanical System Design, Manufacturing, Measurement, Quality control and other interdisciplinary fields of concerns.
- Graduates will practice Mechanical engineering in sensible, flexible and ethical manner to benefit the society, industry and nation toward the rapidly changing global technical standards.
- Graduates will serve as ambassadors for engineering by their knowledge, creativity, imagination and innovation and set new extremes in their profession through lifelong learning.

Mechanical Engineering Student Outcomes

Students who complete the B.TECH degree in ME will be able to:

- 1. An ability to apply the knowledge of mathematics, basic sciences and engineering concepts to solve the complex engineering problems.
- 2. The ability to conduct experiments and to critically analyze and interpret the experimental data to reach at substantial outcomes.
- 3. An ability to design systems, components, or processes to meet appropriate needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
- 4. An ability to identify, formulates, and solves the complex engineering problems.

- 5. An ability to function on multi-disciplinary teams that leads the multi-disciplinary projects.
- 6. An understanding of professional and ethical responsibility.
- 7. An ability to communicate effectively with written, oral, and visual means.
- 8. An ability to understand the impact of engineering solutions in a global, environmental, economical and societal context.
- 9. An ability to recognize the need to engage in life-long learning.
- 10. An ability to attain knowledge of contemporary issues.
- 11. An ability to use the techniques, skills, and modern tools necessary for Mechanical engineering practice.
- 12. Possess ability to estimate costs, estimate quantities and evaluate materials for design and manufacturing purposes.

COURSE OBJECTIVES:

To acquaint students with both steam generation and electricity production and to present some of the engineering calculations encountered in practice.

Objectives that students will meet at the end of the course:

- 1. To analyse different types of steam cycles and estimate efficiencies in a steam power plant.
- 2. Basic knowledge of Different types of Power Plants, site selection criteria of each one of
- 3. them.
- 4. Define the components of such power plants.
- 5. List types, principles of operations, components and applications of steam turbines, steam generators, condensers, feed water and circulating water systems.
- 6. Estimate different efficiencies associated with such systems.
- 7. Design of chimney in thermal power plants, knowledge of cooling tower operation, numerical on surface condenser design.
- 8. Discussing environmental and safety aspects of power plant operation.

COURSE OUTCOMES:

After completion of this course, the students should be able to:

- 1. Discuss the energy resources and energy conversion methods available for the production of electric power in India.
- 2. Determine the efficiency and output of a modern Rankine cycle steam power plant from given data, including superheat, reheat, regeneration, and irreversibilities
- 3. Calculate the heat rate, fan power consumption, flame temperature and combustion air requirements of conventional steam generators (boilers).
- 4. Select the heat transfer tubes needed for condensers and feed water heaters
- 5. Explain the blade shapes, and calculate work output of typical turbine stages.
- 6. Explain the major types of hydro-power and wind-power turbines and estimate power generation potential.

Student List

	College Roll		
. No.	No.	AKU Reg. No.	Name
1	16M08	16102107001	SUMAN BHARTI KESHAV
2	16M52	16102107002	MUKUND KUMAR
3	16M19	16102107003	ALOK ARAYA
4	16M31	16102107004	VIKAS KUMAR BHARTI
5	16M20	16102107005	RAJHANS KUMAR
6	16M69	16102107006	SHASHI BHUSHAN KUMAR
7	16M05	16102107007	NAWLESH KUMAR
8	16M03	16102107008	ABHISHEK KUMAR
9	16M07	16102107009	ANUBHAV SHRIVASTAVA
10	16M58	16102107010	VISHAL KUMAR
11	16M02	16102107011	MD AKRAM ALAM
12	16M51	16102107012	SANDEEP RAHUL
13	16M12	16102107013	ABHISHEK ANAND
14	16M64	16102107014	RATAN KUMAR
15	16M43	16102107015	RAUSHAN KUMAR
16	16M32	16102107016	AVINASH KUMAR
17	16M01	16102107017	SAURAV KUMAR
18	16M22	16102107018	MITHUN KUMAR
19	16M19	16102107019	MD TASLIM
20	16M60	16102107020	KUMARI PAYAL
21	16M24	16102107021	SHASHI KUMAR
22	16M59	16102107022	VIVEK KUMAR
23	16M34	16102107023	VISHWANATH KUMAR
24	16M17	16102107024	PRINCE KUMAR
25	16M68	16102107025	SHIWANGI KUMARI
26	16M16	16102107026	KANHAIYA KUMAR
27	16M66	16102107027	AMRIT RAJ
28	16M65	16102107028	NANDAN KUMAR
29	16M71	16102107029	KRISHNA KUMAR

30	16M25	16102107030	RAHUL PRASAD
31	16M62	16102107031	SHAILENDRA KUMAR
32	16M14	16102107032	SHUBHAM
33	16M37	16102107033	PIYUSH KUMAR
34	16M54	16102107034	AMIT KUMAR
35	16M23	16102107035	SHATRUDHAN KUMAR
36	16M18	16102107036	NAVNEET DHANRAJ
37	16M40	16102107037	RUPESH KUMAR
38	16M70	16102107038	AVINASH RAJ
39	16M38	16102107039	FAIZ ANWAR
40	16M55	16102107040	PRABHAKAR KUMAR
41	16M47	16102107041	VINOD KUMAR
42	16M36	16102107042	KUMAR RAHUL
43	16M61	16102107043	VISHAL KUMAR
44	16M44	16102107044	VISHAL KUMAR
45	16M56	16102107045	LALAN KUMAR
46	16M41	16102107046	RAUSHAN KUMAR
47	16M21	16102107047	VED PRAKASH
48	16M13	16102107048	ANAND MOHAN SINGH
49	16M35	16102107049	KANHAIYA KUMAR
50	16M53	16102107050	TUSHAR VERMA
51	16M27	16102107051	VISHAL KUMAR
52	16M06	16102107052	UJJWAL KUMAR
53	16M04	16102107053	RAHUL KUMAR
54	16M63	16102107054	SONU KUMAR
55	16M15	16102107055	SURENDRA KUMAR
56	16M26	16102107056	MANOHAR KUMAR
57	16M11	16102107057	ASHUTOSH KUMAR
58	16M49	16102107058	NIDHI KUMARI GUPTA
59	16M67	16102107059	ASHUTOSH KUMAR JHA
60		16104107033	ASHUTOSH SINHA
61	17(LE)M01		CHANDAN KUMAR
62	17(LE)M02		RAHUL RAY

		SUDHANSHU KUMAR
63	17(LE)M03	SHARMA
64	17(LE)M04	RAJEEV KUMAR
65	17(LE)M05	SANGAM KUMAR
66	17(LE)M06	KRISHNA KUMAR
67	17(LE)M07	ANKIT RANJAN
68	17(LE)M08	DHIRAJ KUMAR
69	17(LE)M09	GUDDU KUMAR
70	17(LE)M10	SUNNY KUMAR
71	17(LE)M11	RAKESH RAM
72	17(LE)M12	ANAND MOHAN JHA

Institute / School Name :	Muzaffarpur institute of technology, Muzaffarpur		
Program Name	B.Tech (MECHANICAL ENGINEERING)		
Course Code			
Course Name	STEAM POWER SYSTEM		
L-T-P	3-0-3 Course Credits 5		5
Course Coordinator Name	Nibha kumari		

1. Scope and Objectives of the Course

COURSE OBJECTIVES:

To acquaint students with both steam generation and electricity production and to present some of the engineering calculations encountered in practice.

Objectives that students will meet at the end of the course:

- 9. To analyse different types of steam cycles and estimate efficiencies in a steam power plant.
- 10. Basic knowledge of Different types of Power Plants, site selection criteria of each one of
- 11. them.
- 12. Define the components of such power plants.
- 13. List types, principles of operations, components and applications of steam turbines, steam generators, condensers, feed water and circulating water systems.
- 14. Estimate different efficiencies associated with such systems.
- 15. Design of chimney in thermal power plants, knowledge of cooling tower operation, numerical on surface condenser design.
- 16. Discussing environmental and safety aspects of power plant operation.

Text Books (TB)

TB1: Power Plant Engineering by P.K NAG

TB2: Thermal Engineering by C P GUPTA & R Prasad

Reference Books (RB)

RB1:.Steam turbine theory and practices by WB Keaton

Other readings and relevant websites

S.No.	Link of Journals, Magazines, websites and Research Papers
1.	https://nptel.ac.in/courses/112107216/
2.	https://npti.gov.in/
3.	
4.	
5.	
6.	

1. **Evaluation Scheme:**

Component 1*	Sessional Test (ST)*	20
Component 2	Assignment Evaluation	10
Component 3**	End Term Examination**	70
	Total	100

SYLLABUS

Topics	No of lectures	Weightage
Analysis of steam power cycle, Reheat pressure and degree of	3	8%
regeneration process, heat and power generation		
BOILERS-Classification, boiler mounting \$ accessories, draft system, chimney height calculation, Induced and forced draft fans, Boiler energy balance. Constructional details of boiler furnace, Waterwall, Pulverized fuel burning, Different types of furnaces for burning coal, fuel oil \$ gas. Circulation Theory. Feed Water Treatment	14	33%
Steam Nozzles:- Flow through nozzles shapes and flow area, Effect of friction, Supersaturated flow, Estimation of flow area, Effect of divergence.	5	12%
STEAM TURBINES:-Construction \$ working of steam turbines, impulse and reaction inlet and outlet velocity diagram, work output \$ efficiency. Pressure and velocity compounding, Regenerative feed heating cycle, Reheat cycle, Reheat factor, Governing of Turbine, Back pressure and pass out Turbine	12	28%
STEAM CONDENSER:- Types, Cooling water requirement, Air leakage and air pump capacity, Vacuum and condenser efficiency, Steam ejector, spray pond \$ cooling tower.	6	15%

This Document is approved by:

Designation	Name	Signature
Course Coordinator		
H.O.D		
Principal		
Date		

Evaluation and Examination Blue Print:

Internal assessment is done through quiz tests, presentations, and assignments work. Two sets of question papers are asked from each faculty and out of these two, without the knowledge of faculty, one question paper is chosen for the concerned examination. The components of evaluations along with their weightage followed by the University is given below

Sessional Test 20%

Internals 10%

End term examination 70%

Institute / School Name :	MIT Muzaffarpur	MIT Muzaffarpur		
Program Name	B.Tech Mechanical Engineering			
Course Code				
Course Name	STEAM POWER SYSTEM			
L-T-P	3-0-3	Course Credits	3.5	
Course Coordinator Name	NIBHA KUMARI	•		

LECTURE PLAN

Topics	Lecture	Date on which the
	Number	Lecture was taken
Introduction & analysis of steam power cycle		11/07/18
Analysis of steam power cycle,	1	13/07/18
Reheat	2	16/07/18
Regeneration	3	18/07/18
heat and power generation	4	20/07/18
Boilers		23/07/18
BOILERS-Classification, boiler	5	25/07/18
boiler mounting \$ accessories	6	27/07/18
draft system, chimney height calculation	7	3/08/18
Induced and forced draft fans, Boiler energy balance.	8	6/08/18
Numerical based on above, Different types of furnaces for burning coal, fuel oil \$ gas		8/08/18
Feed Water Treatment, Waterwall	9	
Circulation Theory	10	
Steam nozzles	11	
Flow through nozzles	12	
shapes and flow area	13	
Effect of friction	14	
Supersaturated flow	15	
Supersaturated flow	16	
Effect of divergence		
Numerical based on above	17	
Numerical based on above	18	

Steam turbines	19	
Construction \$ working of steam turbines,	20	
impulse and reaction inlet and outlet velocity diagram	21	
work output \$ efficiency	23	
Pressure and velocity compounding	24	
Regenerative feed heating cycle	25	
Regenerative feed heating cycle	26	
Governing of Turbine	27	
Back pressure and pass out Turbine	28	
Numerical based on above	29	
Steam condenser		
Introduction to steam condenser	30	
Types of cooling tower	31	
Air leakage and air pump capacity,	32	
Vacuum and condenser efficiency	33	
Steam ejector	34	
Types of condenser		
Cooling tower	35	
Numerical based on above	36	
Instrumentation in steam turbine plan	37	
Instrumentation	38	
	39	
	40	·

MUZAFFARPUR INSTITUTE OF TECHNOLOGY, MUZAFFARPUR MECHANICAL ENGINEERING

B.Tech Vth Sem

Instruction: Answer all the questions
Total Marks: 10
Total Time: 20 min.
Name:
Registration No.:
1. Carnot cycle is a reversible cycle.
a) True
b) false
2. For analytical purposes, the Rankine Cycle is assumed to be in?
a) Unsteady flow operation
b) Turbulent flow operation
c) Steady flow operation
d) Laminar flow operation
3. The net work done in a Rankine Cycle is the difference of?
a) Condenser work & Boiler work
b) Boiler work & Pump work
c) Turbine Work & Pump work
d) Condenser work & Pump work
4. Steam Rate is the reciprocal of
a) Net work done
b) Heat extracted from condenser
c) Heat given to reciprocal
d) Work done by turbine
5. Efficiency of a Rankine Cycle is also expressed as
a) Capacity Ratio
b) Heat Rate
c) Heat Ratio
d) Steam Rate
6. Which of these is sometimes neglected?
a) Turbine work
b) Pump work
c) Condenser heat
d) Boiler heat
7. The efficiency of all reversible heat engines operating between the same heat reservoirs is
a) same
b) independent of the nature of working substance
c) independent of the amount of working substance
d) all of the mentioned
8. Steam Power Plants are more popular in electric power generation because
a) Work output of turbine is very large than work input to the pump
b) Work output of turbine is very small than work input to the pump
c) Work output of turbine is equal to work input to the pump
d) None of the mentioned.
9. Rankine cycle comprises of
(a) Two isentropic processes and two constant volume processes
(b) Two isentropic processes and two constant pressure processes
(c) Two isothermal processes and two constant pressure processes
(d) None of the above.

10. In thermal power plant, turbine is placed

- a) Before boiler b) in between boiler and generator
- c) after generator
- d) any of the above

MUZAFFARPUR INSTITUTE OF TECHNOLOGY, MUZAFFARPUR MECHANICAL ENGINEERING

B.Tech Vth Sem

Cochran

Lamont Lancashire Stirling

Weekly Test marks of Steam Power System								
				16/07/2018	18-07-2023			
		College Roll		Marks(out of				
S.No	AKU Reg. No.	No.	Name	10)	Marks(out of 10)			
1	16102107001	16M08	SUMAN BHARTI KESHAV	9	10			
2	16102107002	16M52	MUKUND KUMAR	AB	AB			
3	16102107003	16M19	ALOK ARAYA	9	7			
4	16102107004	16M31	VIKAS KUMAR BHARTI	AB	7			
5	16102107005	16M20	RAJHANS KUMAR	7	7			
6	16102107006	16M69	SHASHI BHUSHAN KUMAR	9	8			
7	16102107007	16M05	NAWLESH KUMAR	10	8			
8	16102107008	16M03	ABHISHEK KUMAR	8	6			
9	16102107009	16M07	ANUBHAV SHRIVASTAVA	AB	AB			
10	16102107010	16M58	VISHAL KUMAR	AB	AB			
11	16102107011	16M02	MD AKRAM ALAM	AB	8			
12	16102107012	16M51	SANDEEP RAHUL	9	AB			
13	16102107013	16M12	ABHISHEK ANAND	9	6			
14	16102107014	16M64	RATAN KUMAR	9	7			
15	16102107015	16M43	RAUSHAN KUMAR	AB	AB			
16	16102107016	16M32	AVINASH KUMAR	4	6			
17	16102107017	16M01	SAURAV KUMAR	AB	AB			
18	16102107018	16M22	MITHUN KUMAR	9	AB			
19	16102107019	16M19	MD TASLIM	AB	9			
20	16102107020	16M60	KUMARI PAYAL	8	7			
21	16102107021	16M24	SHASHI KUMAR	AB	AB			
22	16102107022	16M59	VIVEK KUMAR	7	AB			
23	16102107023	16M34	VISHWANATH KUMAR	6	4			
24	16102107024	16M17	PRINCE KUMAR	7	5			
25	16102107025	16M68	SHIWANGI KUMARI	9	10			
26	16102107026	16M16	KANHAIYA KUMAR	8	AB			
27	16102107027	16M66	AMRIT RAJ	AB	AB			
28	16102107028	16M65	NANDAN KUMAR	9	9			
29	16102107029	16M71	KRISHNA KUMAR	10	8			
30	16102107030	16M25	RAHUL PRASAD	8	9			
31	16102107031	16M62	SHAILENDRA KUMAR	AB	AB			
32	16102107032	16M14	SHUBHAM	10	AB			
33	16102107033	16M37	PIYUSH KUMAR	9	AB			
34	16102107034	16M54	AMIT KUMAR	AB	AB			
35	16102107035	16M23	SHATRUDHAN KUMAR	AB	AB			
36	16102107036	16M18	NAVNEET DHANRAJ	AB	AB			
37	16102107037	16M40	RUPESH KUMAR	AB	AB			

38	16102107038	16M70	AVINASH RAJ	5	AB
39	16102107039	16M38	FAIZ ANWAR	AB	AB
40	16102107040	16M55	PRABHAKAR KUMAR	AB	AB
41	16102107041	16M47	VINOD KUMAR	8	7
42	16102107042	16M36	KUMAR RAHUL	AB	7
43	16102107043	16M61	VISHAL KUMAR	AB	AB
44	16102107044	16M44	VISHAL KUMAR	AB	AB
45	16102107045	16M56	LALAN KUMAR	7	AB
46	16102107046	16M41	RAUSHAN KUMAR	AB	AB
47	16102107047	16M21	VED PRAKASH	6	8
48	16102107048	16M13	ANAND MOHAN SINGH	7	AB
49	16102107049	16M35	KANHAIYA KUMAR	10	8
50	16102107050	16M53	TUSHAR VERMA	AB	AB
51	16102107051	16M27	VISHAL KUMAR	AB	AB
52	16102107052	16M06	UJJWAL KUMAR	AB	AB
53	16102107053	16M04	RAHUL KUMAR	AB	AB
54	16102107054	16M63	SONU KUMAR	7	8
55	16102107055	16M15	SURENDRA KUMAR	9	8
56	16102107056	16M26	MANOHAR KUMAR	AB	AB
57	16102107057	16M11	ASHUTOSH KUMAR	8	8
58	16102107058	16M49	NIDHI KUMARI GUPTA	AB	8
59	16102107059	16M67	ASHUTOSH KUMAR JHA	6	AB
60	16104107033		ASHUTOSH SINHA	AB	7
61		17(LE)M01	CHANDAN KUMAR	9	7
62		17(LE)M02	RAHUL RAY	AB	AB
			SUDHANSHU KUMAR		
63		17(LE)M03	SHARMA	9	6
64		17(LE)M04	RAJEEV KUMAR	AB	AB
65		17(LE)M05	SANGAM KUMAR	8	8
66		17(LE)M06	KRISHNA KUMAR	7	AB
67		17(LE)M07	ANKIT RANJAN	AB	AB
68		17(LE)M08	DHIRAJ KUMAR	AB	AB
69		17(LE)M09	GUDDU KUMAR	6	AB
70		17(LE)M10	SUNNY KUMAR	AB	7
71		17(LE)M11	RAKESH RAM	7	6
72		17(LE)M12	ANAND MOHAN JHA	10	AB