B.Tech. 6th Semester Exam., 2016

DESIGN OF CONCRETE STRUCTURE—I

Time: 3 hours

Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are **NINE** questions in this paper.
- (iii) Attempt **FIVE** questions in all.
- (tv) Question No. 1 is compulsory.
- Choose the correct answer (any seven):

2×7=14

- (a) The total compressive force at the time of failure of a concrete beam section of width b without considering the partial safety factor of the material is
 - (i) $0.36 f_{ck} bX_{u}$
 - (ii) $0.54 f_{ck} bX_{u}$
 - (iii) $0.66 f_{ck} bX_{u}$
 - (iv) $0.8 f_{ck} bX_{u}$
- The characteristic strength of concrete is defined as that compressive strength below which not more than
 - (i) 10% of result fail
 - (ii) 5% of result fail
 - (iii) 2% of result fail
 - (iv) None of the above

(Turn Over)

$$/0 I_0/6+b+6D$$

(ii)
$$I_0 + 6D$$

(iii)
$$I_0 / 6 + 6D$$

(iv)
$$I_0 / 6 + b$$

- (d) The span to depth ratio limit is specified in IS 456:1978 for the reinforced concrete beams, in order to ensure that the
 - (i) tensile crack width is below a limit
 - (ii) shear failure is avoided
 - (iii) stress in the tension reinforcement is less than the allowable value
 - (iv) deflection of the beam is below a limiting value
- (e) The partial factor of safety for concrete as per IS 456:2000 is

√i) 1.50

(ii) 1·15

(iii) 0·87

(iv) 0.446

(f) As per the provisions of IS 456:2000, the modulus of elasticity of M-25 grade concrete (in N/mm²) can be assumed to be

/i) 25000

(ii) 28500

(iii) 30000

(iv) 36000

- (g) A reinforced concrete structure has to be constructed along a seacoast. The minimum grade of concrete to be used as per IS 456:2000 is
 - (i) M-15
 - (ii) M-20
 - (iii) M-25

/iv) M-30

- (h) The modulus of rupture of concrete in terms of its characteristic cube compressive strength $f_{\rm ck}$ (in MPa) according to IS 456:2000 is
 - (i) $5000 f_{ck}$
 - (ii) $0.7 f_{ck}$
 - (iii) $5000 \operatorname{sqrt}(f_{ck})$

 $-(iv) 0.7 \operatorname{sqrt}(f_{ck})$

- The maximum possible value of compaction factor for fresh (green) concrete is
 - (i) 0.5
 - (ii) 1·0
 - (iii) 1·5
 - (iv) 2.0

AK16/664

- The first moment of area about the axis of bending for a beam cross-section is
 - (i) moment of inertia
 - (ii) shape factor
 - (iii) section modulus
 - (iv) polar moment of inertia
- Determine the moment of resistance of a single-reinforced beam 160 mm wide and 300 mm deep to the centre of reinforcement, if the stresses in steel and concrete are not to $140 \, \text{N/mm}^2$ exceed and $5 \,\mathrm{N/mm^2}$ respectively. The reinforcement consists of 4 bars of 16 mm diameter. Take m = 18. If the above beam is used over an effective span of 5 m, find the maximum load the beam can carry, inclusive of its own weight.

3. A simply supported beam, 300 mm wide and 500 mm effective depth, carries a uniformly distributed load of 50 kN/m including its own weight, over an effective span of 4 meters. Design the shear stirrups in the form of vertical stirrups. Use M-15 concrete. Take $\sigma_{st} = \sigma_{sv} = 140 \text{ N/mm}^2$ and

 $f_y = 250 \text{ N/mm}^2$. Assume that the beam contains 0.75% reinforcement throughout the length. For $100 A_s / bd = 0.75\%$ permissible shear stress = 0.34 N/mm².

4. Design the reinforcement for a reinforced concrete beam 300 mm wide and 400 mm deep of grade M-20, to resist an ultimate moment of 150 kN-m, using mild steel bars of grade Fe-250.

5. An isolated T-beam carries a uniformly distributed load of 40 kN/m run, inclusive of its own weight, over an effective span of 6 m. The beam has the following dimension: Width of flange=800 mm, thickness of flange=100 mm, effective depth of the beam=480 mm and width of rib = 300. Determine the necessary areas of tensile compressive reinforcement. σ_{st} =140N/mm² and σ_{cbc} =5N/mm² and m = 18.

14

14

akubihar.com

(Turn Over)

14

6. Design an RC slab, only for section and main reinforcement, for a room having inside dimensions 3 m × 6 m. The thickness of the supporting wall is 300 mm. The slab carries 100 mm thickness lime concrete at its top, the unit weight of which may be taken as 19000N/m^3 . The live load on the slab may be taken as 2500N/m^3 . Assume the slab to the simply supported at the ends. Use M-20 concrete and Fe-415 steel. Constants are:

For M-20, $c = \sigma_{cbc} = 7 \text{N/mm}^2$, $\sigma = \sigma_{st} 230 \text{N/mm}^2$, m = 13.33., $k_c = 0.289$, $j_c = 0.904$, and $R_c = 0.914$.

 Design a short square column to carry an axial load of 1200 kN. Use M-25 concrete mix, and Fe-415 steel.

8. A brick wall, 300 mm thick, carries a load of 180 kN/m length. Design an RCC footing, if the safe bearing capacity of soil is 120 kN/m^2 . Use M-20 concrete and Fe-415 steel. Constants are: For M-20, $c = \sigma_{cbc} = 7 \text{ N/mm}^2$, $\sigma = \sigma_{st} 230 \text{ N/mm}^2$, $m = 13 \cdot 33$., $k_c = 0 \cdot 289$, $j_c = 0 \cdot 904$, and $R_c = 0 \cdot 914$. Use $\tau_c = 0 \cdot 28 \text{ N/mm}^2$ and $k = 1 \cdot 1$.

9. A doubly reinforced concrete beam is 400 mm wide and 600 mm deep to the centre of tensile reinforcement. The compression reinforcement consists of 4 bars of 16 mm diameter, and is placed with its centre at a depth of 40 mm from the top. The tensile reinforcement consists of 4 bars of 20 mm diameter. The section is subjected to a bending moment of 100 kN-m. Determine the stresses in concrete and steel. Take m=16. 14

* * *

14

14

14