Code: 011410

7 Perive the differential equation of GVF and also write the basic assumptions involved in the analysis of it.

(6)

- 8. Water from a low dam is released through a sluice gate on a horizontal rectangular channel. The depth of water upstream of the sluice gate is 16.0 m above the channel bed and the gate opening is 1.5 m. The sluice gate can be assumed to be sharp-edged. If a free hydraulic jump is formed just downstream of the gate, find the sequent depth and the percentage of the initial energy lost in the jump.
- Frite short notes on any three of the following:
 - (a) Boundary-layer thickness
 - (b) Specific energy
 - (c) Hydraulically efficient channel
 - kal Causes of unsteady flow

* * * 1

B.Tech. 4th Semester Exam., 2015

HYDRAULICS AND OPEN CHANNEL FLOW

Time: 3 hours

Full Marks: 70

Instructions:

- (i) All questions carry equal marks.
- (ii) There are NINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
 - 1. Answer any seven questions from the following:
 - (a) The boundary layer exists in which of the following?
 - (i) Flow of real fluids
 - (ii) Flow of ideal fluids
 - Flow over flat surfaces only
 - (iv) Pipe-flow only

- (b) When the fluid flows along the solid boundary, more and more fluid gets retarded in the vicinity of the boundary; this deceleration is due to
 - (i) high velocity of the fluid
 - (ii) high velocity flow outside the boundary layer
 - (iii) high velocity gradients which exist at and near the boundary
 - (iv) None of the above
- (c) Piezometric head is the sum of
 - (i) pressure head, datum head and velocity head
 - (ii) datum head and velocity head
 - (iii) pressure head and velocity head
 - (jul pressure head and datum head
- (d) In the uniform flow in a channel of small bed slope, the hydraulic grade line
 - (i) coincides with the bed
 - (ii) is considerably below the free surface
 - (iii) is considerably above the free surface
 - (iv) essentially coincides with the free surface

- (e) The term alternate depths is used in open channel flow to denote the depths
 - (i) having the same kinetic energy for a given discharge
 - (ii) having the same specific force for a given discharge

having the same specific energy for a given discharge

- (iv) having the same total energy for a given discharge
- (f) In a parabolic channel ($x^2 = 4ay$), the value of E_c / y_c is

(g) The dimensions of Manning's n are

(ii)
$$L^{\frac{1}{2}}T^{-1}$$

$$\mathcal{L} = \frac{1}{3}T$$

(iv)
$$L^{-\frac{1}{3}}T^{-1}$$

- (h) The hydraulic jump is a phenomenon in which the water surface connects the alternate depths
 - (ii) which occurs only in frictionless channels
 - (iii) which occurs only in rectangular channels
 - (iv) None of the above
- (i) The standard-step method aims to solve

(i) the differential equation of GVF

- (iii) the differential energy equation of GVF
- (iv) the momentum equation
- (j) If the Froude number of a hydraulic jump is 5.50, it can be classified as
 - (i) an oscillating jump
 - (ii) a weak jump
 - (iii) a strong jump
 - (iv) a steady jump
- 2. If velocity distribution in laminar boundary layer over a flat plate is assumed to be given by second-order polynomial $u = a + by + cy^2$, determine its form using the necessary boundary conditions.

- 3. An expansion in a horizontal rectangular channel takes place from a width of 2·0 m to 3·0 m. The depths of flow for a discharge of 7·2 m³/s are 1·2 m and 1·4 m in the narrower and wider sections respectively. Estimate the energy loss in the transition. Assume the kinetic energy correction coefficient α to have values of 1·05 and 1·15 at the inlet and outlet of the transition, respectively.
- 4. Explain critical-flow condition and define critical depth. A parabolic channel has its profile given by $x^2 = 4ay$. Obtain an expression for the relative specific energy at the critical flow, E_c/y_c for this channel.
- 5 Derive the Chezy resistance formula. Discuss the resistance formula for practical use. What are the factors that affect the Manning's roughness coefficient, n?
- The specific energy in a 2.0 m wide rectangular channel is not to exceed 1.2 m. What maximum discharge can be carried in such a channel? What longitudinal slope is required to sustain such a flow? Assume, Manning's n = 0.015.

14