MUZAFFARPUR INSTITUTE OF TECHNOLOGY, Muzaffarpur

COURSE FILE

OF

SOLID STATE PHYSICS AND DEVICES

(041308)

Faculty Name:

Mr. RAVI KUMAR

ASSISTANT PROFESSOR,

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

	Content					
S.No.	Торіс	Page No.				
1	Vision of department	3				
2	Mission of department	4				
3	PEO's	5				
4	PO's	6				
5	Course objectives and course outcomes(CO)	8				
6	Mapping of CO's with PO's	9				
7	Course syllabus and GATE syllabus	10				
8	Time table	12				
9	Student list	14				
10	Textbook / Reference Books	18				
11	Course plan	19				
12	Assignments	21				
13	Question Bank	27				
14	List of Experiments	42				

VISION OF DEPARTMENT

The department is committed for high quality teaching and pursuit of excellence in research. We pledge to serve the nation and society by providing skilled and well developed human resource through brilliance in technical education and research.

MISSION OF DEPARTMENT

- To encourage innovation and research through projects and developmental activities with industries, institutions and government.
- To inculcate moral and ethical values with a sense of competitiveness, self-confidence and sincerity among the students to make them a good human and a good citizen.
- To produce excellent engineers, innovators, entrepreneurs and academicians for the growth of the society.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

After successful completion of program, graduates will be able to

PEO1: Work in the infrastructure development projects.

PEO2: Pursue higher studies.

PEO3: Contribute in teaching, research and other developmental activities of electronics & communication engineering and its allied fields.

PEO4: Work in the multicultural and multidisciplinary groups for the sustainable development and growth of electronics and communication engineering projects and profession.

PROGRAMME OUTCOMES (PO)

PO1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of and need for sustainable development.
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities

	and norms of the engineering practice.
PO9	Individual and teamwork: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Institute / College Name :	MUZAFFARPUR INSTITUTE OF TECHNOLOGY		
Program Name	B.Tech. ECE		
Course Code	041308		
Course Name	SOLID STATE PHYSICS AND DEVICES		
Lecture / Tutorial / Practical	3-0-3	Course Credits	5
(per week):			
Course Coordinator Name	Mr. RAVI KUMAR		

COURSE OBJECTIVE AND COURSE OUTCOMES:

Course objective:

This course provides the student with the fundamental skills to analyze and solve solid state devices. It will build basic background for how semiconductor devices work. Students equipped with the knowledge and training provided in the course will be able to participate in design and development, installation and operation of a wide spectrum of applications in the field of solid state device. Solid state device is the basic fundamental of electronics industry.

Course outcomes (CO):

CO1: learn the history of development of electronics devices.

CO2: fabrication process for semiconductor devices.

CO3: analytical and mathematical modelling of semiconductor devices.

CO4: Compare design issues, advantages, disadvantages and limitations of solid state devices.

MAPPING OF COs AND POs

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1		2		2	3	2			3		3
	1		2		L	3	Z			5		5
CO2	2	1	2	2	3	2	1			2		1
CO3	1	3	3	2	3							3
CO4	1	2	2	3						2		2
Correlation level: 1- slight (Low)					2- mode	erate (N	<i>Iedium</i>)	3-subst	antial (H	ligh)	

COURSE SYLLABUS:

Topics	Number of Lectures	Weightage (%)
History Brief about history of development of electronics devices. Start from vacuum tubes diode to application specific integrated chip i.e. vacuum diodes, triode, solid state era, microprocessor era, integrated circuit era.	2	4
Review of device physics Photo ionic emission, thermionic emission, gas discharge tube, vacuum tube diode, triode, tetrods and pentods.	3	10
Crystal growth Bulk and epitaxial growth	2	5
IC Technology Oxidation, diffusion, ion implantation, lithography, thin film deposition, process integration flow for P-N junction, BJT and MOSFET fabrication.	4	10
Physics and technology of classical diodes Semiconductor carrier modelling, bonding model, energy band model, band gap, carrier properties, density states, Fermi function, equilibrium carrier concentration, carrier action drift mobility, diffusion current, recombination and generation, continuity equation, minority carrier diffusion equation, junction diode step function, built in potential, P-N junction, depletion approximation, ideal diode equation, deviation from ideal, junction breakdown, junction capacitance, turn off and turn on transients.	12	20

Physics and technology of BJT Operation consideration, modes and configuration, base transport factor, performance parameters, common base current gain, small scale modelling, common emitter gain, base width modulation, qualitative approach to understand switch response.	7	20
Physics and technology of FET Junction FET theory of application, I-V characteristics, mos capacitor, MOSFET theory of operation, non ideal MOSFET.	5	15
Properties and technology of UJT and SCR Silicon controlled rectifier, uni junction transistor (theory of operation)	2	6
Photonics Photo diode, solar cell, solid state LASER diodes	3	6
CCD and CCD camera	2	4

MUZAFFARPUR INSTITUTE OF TECHNOLOGY B.Tech. 5th (Fifth) Semester TIME TABLE

WITH EFFECT FROM 10.07.2018

	3 th Semester Electronics and Communication Branch							
	09:00	10:00	11:00	12:00	R	2:00	3:00	4:00
	1	2	3	4	E	5	6	7
MON			ECE			Weekly Test		
TUES			ECE LAB		С			<u>C</u>
WED					E			
THUR	ECE				-			
FRI					S	ECE		
SAT					S			

MUZAFFARPUR INSTITUTE OF TECHNOLOGY B.Tech. 5th (Fifth) Semester TIME TABLE

WITH EFFECT FROM 10.07.2018

	3 rd Semester Information and Technology Branch							
	09:00	10:00	11:00	12:00	R	2:00	3:00	4:00
	1	2	3	4	E	5	6	7
MON								Weekly Test
TUES	EE				С			
WED				EE	E	EE LAB		
THUR								
FRI					s			
SAT		EE LAB			s		EE	

STUDENT LIST:

3rd semester Electronics and Communication department

SL. NO.	ROLL NO.	AKU REG. NO.	NAME
1	16EC39	16104107012	ANMOL SHRIVASTAVA
2	16EC25	16104107014	MD REHAN
3	17EC23	17104107001	PRINCE KUMAR
4	17EC37	17104107002	RAVI KUMAR SINGH
5	17EC35	17104107003	RAJESH DAS
6	17EC34	17104107004	GAUTAM KUMAR
7	17EC32	17104107005	VICKY KUMAR
8	17EC11	17104107006	SACHIN KUMAR
9	17EC39	17104107007	BRAJESH KUMAR
10	17EC04	17104107008	AUSHUTOSH KUMAR
11	17EC15	17104107009	PRADEEP KUMAR
12	17EC13	17104107010	SHABAB ANWAR
13	17EC01	17104107011	ASHMITA KUMARI
14	17EC14	17104107012	ASTITVA ANAND
15	17EC20	17104107013	AKASH DEEP
16	17EC03	17104107014	SHILPA SONALI
17	17EC24	17104107015	GULFISHAN SHARAFAT
18	17EC33	17104107016	APARNA RANI
19	17EC05	17104107017	SUPRIYA BHARTI
20	17EC43	17104107018	NIDHI SINGH
21	17EC29	17104107019	PUJA KUMARI
22	17EC12	17104107020	SUNNY SAURAV
23	17EC10	17104107021	BIPUL KUMAR
24	17EC41	17104107022	ABHISHEK RANA
25	17EC22	17104107023	GAURAV KUMAR
26	17EC21	17104107024	NANDAN KUMAR
27	17EC26	17104107025	PRINCE KUMAR
28	17EC40	17104107027	MANISHA PRAKASH
29	17EC28	17104107028	SHREYA SWARAJ
30	17EC25	17104107029	AMBRIN FATMA
31	17EC36	17104107030	KARSHNI KANT PATHAK
32	17EC30	17104107031	AMMAR NAJUM
33	17EC27	17104107032	MD SARFARAZ IQBAL
34	17EC46	17104107033	NIRBHAY KUMAR PANDEY
35	17EC47	17104107034	BANTY KUMAR
36	17EC44	17104107035	KUSH KUMAR
37	17EC16	17104107036	BITTU KUMAR
38	17EC48	17104107037	SURAJ KUMAR
39	17EC19	17104107039	SRIJAN SINGH

40	17EC45	17104107040	MD SHERIQUE ANWAR
41	17EC42	17104107041	ROHIT KUMAR
42	17EC38	17104107042	AADIL RAZA
43	17EC06	17104107043	SUPRIYA KUMARI

3rd semester Electrical Engineering department

SL. NO.	ROLL NO.	AKU REG. NO.	NAME
1	16E47	16103107020	SHUBHAM KUMAR
2	17E01	17103107001	SHIVANGI
3	17E24	17103107002	PRAGYA KUMARI
4	17E04	17103107003	KANNU PRIYA
5	17E08	17103107004	VIDYA KUMARI
6	17E07	17103107005	APARNA SINGH
7	17E13	17103107006	KHUSHBOO ANAND
8	17E09	17103107007	VIVEK KUMAR
9	17E03	17103107008	SHIVAM DUBEY
10	17E17	17103107009	VANDANA BHARTI
11	17E16	17103107010	SANDHYA KUMARI
12	17E19	17103107011	NEHA SINGH
13	17E10	17103107013	ABHIJEET KUMAR
14	17E12	17103107014	NIRAJ KUMAR
15	17E02	17103107015	SAURAV SINHA
16	17E22	17103107016	ABHINAV KISHORE
17	17E25	17103107017	GAUTAM KUMAR
18	17E11	17103107018	UTPAL KANT
19	17E26	17103107019	ASHUTOSH KUMAR
20	17E21	17103107020	DEPAK KUMAR
21	17E42	17103107021	RAVI PRAKASH CHOUDHARY
22	17E06	17103107022	SAURAV KUMAR
23	17E34	17103107023	PAVAN KUMAR
24	17E23	17103107024	SINTU KUMAR
25	17E55	17103107025	GHANSHYAM KUMAR
26	17E18	17103107026	SATYA PRAKASH
27	17E48	17103107027	ASHISH KUMAR
28	17E20	17103107028	MOHAMMAD EHSHANULLAH

29	17E30	17103107029	MASYOOD AHMAD
30	17E60	17103107030	ABHIMANYU KUMAR SINGH
31	17E29	17103107031	SUMIT KUMAR
32	17E44	17103107032	PRIYA KUMARI
33	17E32	17103107033	NELSHAN RANI
34	17E47	17103107034	VIKASH KUMAR
35	17E51	17103107035	ROHIT KUMAR
36	17E31	17103107036	VANISHA SHARMA
37	17E58	17103107037	MANISH KUMAR
38	17E61	17103107038	SWETA KUMARI
39	17E38	17103107039	ABHISHEK RAJ
40	17E33	17103107040	SANDEEP KUMAR SINHA
41	17E36	17103107041	ANAMIKA BHARTI
42	17E41	17103107042	RAVISHANKAR KUMAR
43	17E53	17103107043	MITHUN KUMAR
44	17E63	17103107044	NAVNEET NAYAN
45	17E28	17103107045	KUMAR ARYAN
46	17E64	17103107046	AMIT KUMAR
47	17E37	17103107047	TAMANNA CHOUDHARY
48	17E56	17103107048	ASHWINI KUMAR
49	17E39	17103107049	PRAVEEN KUMAR SAFI
50	17E35	17103107050	NAVIN PUSHKAR
51	17E52	17103107051	PREM BHARTI
52	17E59	17103107052	SANTOSH KUMAR RAM
53	17E40	17103107053	ANAMIKA KAUSHIK
54	17E43	17103107054	BUNTY KUMAR PASWAN
55	17E50	17103107055	AMAN RAJ
56	17E15	17103107056	RAJ KAMAL
57	17E45	17103107057	RAMBABU BAITHA
58	17E62	17103107058	RAJSHEKHAR KUMAR GOKUL
59	17E57	17103107059	RAHAT ARAFAT
60	17E54	17103107060	SUSHIL KUMAR

TEXT BOOKS:

- TB1: Solid state electronic devices by Streetmen And Banerjee, Pearson:
- TB2: Basic principles- semiconductor physics and devices by Nearmen,TMH
- TB3: Semiconductor devices by Kano, Pearson

REFERENCE BOOKS:

RB1:	Electronic Materials and Devices by Kasp. TMP.
RB2:	Theory of Semiconductor Devices by Karl Hess, PHI.
RB3:	Semiconductor Devices by Jasprit Singh, Wiley Student Edition.
RB4:	Device electronics for Integrated Circuits by Muller & Kamins, Wiley Student Edition

COURSE PLAN

Lecture Number	Topics	Web Links lectures	s for	video	Text Book / Reference Book	Page numbers of Book
1-2	HISTORY					
	Brief about history of development of					
	electronics devices. Start from					
	vacuum tubes diode to application					
	specific integrated chip i.e. vacuum					
	diodes, triode, solid state era,					
	microprocessor era, integrated circuit					
	era.					
3-5	REVIEW OF DEVICE PHYSICS					
	Photo ionic emission, thermionic					
	emission, gas discharge tube, vacuum					
	tube diode, triode, tetrods and pentods.					
	all and and a mode, and pentous.					
6-7	Crystal growth					
0-7						
	Bulk and epitaxial growth					
8-11	IC Technology					
	Oxidation, diffusion, ion implantation,					
	lithography, thin film deposition,					
	process integration flow for P-N					
	junction, BJT and MOSFET					
	fabrication					
	labileation					
12-23	Physics and technology of classical					
	diodes					
	Semiconductor carrier modelling,					
	bonding model, energy band model,					
	band gap, carrier properties, density					
	states, Fermi function, equilibrium					
	carrier concentration, carrier action					
	drift mobility, diffusion current,					
	recombination and generation,					
	continuity equation, minority carrier					
	continuity equation, minority called					

]
	diffusion equation, junction diode		
	step function, built in potential, P-N		
	junction, depletion approximation,		
	ideal diode equation, deviation from		
	ideal, junction breakdown, junction		
	capacitance, turn off and turn on		
	transients.		
24-30	Physics and technology of BJT		
	Operation consideration, modes and		
	configuration, base transport factor,		
	performance parameters, common		
	base current gain, small scale		
	modelling, common emitter gain, base		
	width modulation, qualitative		
	approach to understand switch		
	response.		
	response.		
31-36	Physics and technology of FET		
	Junction FET theory of application, I-		
	V characteristics, MOS capacitor,		
	MOSFET theory of operation, non-		
	ideal MOSFET.		
36-38	Properties and technology of UJT		
	and SC		
	Silicon controlled rectifier, uni		
	junction transistor (theory of		
	operation)		
38-41	Photonics		
	Photo diode, solar cell, laser diode		
41-43	CCD and CCD camera		
	Charge couple device theroy		

DETAILS OF ASSIGNMENTS:

S.No.	Assignment	Unit wise
1	Assignment 1	Unit 1 and unit 2
2	Assignment 2	Unit 3 and unit 4
3	Assignment 3	Unit 5 and unit 6
4	Assignment 4	Unit 7 unit 8 and unit 9

ASSIGNMENT 1

ASSIGNMENT 2

ASSIGNMENT 3

ASSIGNMENT 4

Code : 041308

akubihar.com

akubihar.com

B.Tech. 3rd Semester Exam., 2014

SOLID-STATE PHYSICS AND DEVICES

Time : 3 hours Full Marks : 70 Instructions :

- (1) The marks are indicated in the right-hand margin.
- (ii) There are NINE questions in this paper.
- (iii) Attempt.FIVE questions in all.
- (iv) Question No. 1 is compulsory.

1. Answer any seven from the following : 2×7=14

- (a) What are the methods used for epitaxial growth?
- (b) Define direct and indirect semiconductors.
- (c) Define the effective mass and express it in terms of (E, k).
- (d) Define conductivity and mobility.
- (e) Find the resistivity of intrinsic germanium at 300 K. Given that the intrinsic density of carriers is $2 \cdot 5 \times 10^{19} / \text{m}^3$, $\mu_e = 0.39 \text{ m}^2 / \text{V.s.}$, $\mu_n = 0.19 \text{ m}^2 / \text{V.s.}$.

AK15-1900/93 akubihar.com (Turn Over)

(2)

akubihar.com

- (f) What is diffusion length and mean life time?
- (g) Define the varactor diode.
- (h) What is emitter injection efficiency and current transfer ratio?
- (i) What is thermionic emission?
- (j) Define MOSFET and BJT. akubihar.com
- (a) Write short notes on (i) vapour-phase epitaxy and (ii) molecular beam epitaxy.

4×2=8

6

8

- (b) In a very long p-type Si bar with crosssectional area = 0.5 cm^2 and $N_a = 10^{17} \text{ cm}^{-3}$, we inject holes such that the steady-state excess hole concentration is $5 \times 10^{16} \text{ cm}^{-3}$ at x = 0. What is the hole current there? Assume that $\mu_p = 500 \text{ cm}^2/\text{V.s}$ and $\tau_p = 10^{10} \text{ sec}$.
- (a) Write short notes on direct and indirect recombination in a semiconductor.
 - (b) What is ion implantation? akubihar.com 6
- (a) Derive the diffusion equation for steadystate distribution for electron and hole.
 - (b) Derive Einstein relation with respect to both carriers in semiconductor. 6

AK15-1900/93 akubihar.com (Continued)

- and the second
- 131
- 5. (a) What is reverse breakdown? Describe the different reverse breakdown mechanism.
 - (b) Derive the relationship between width of transition region in terms of contact potential and doping concentrations on each side of the junctions.
- 6. (a) An abrupt Si p-n junction has $N_a = 10^{18} \text{ cm}^{-3}$ on one side and $N_d =$ 5×10^{15} cm⁻³ on the other has a circular cross-section with a diameter of 10 µm. Calculate χ_{no} , χ_{po} , Q_1 and ξ_0 for this junction at equilibrium (300 K). Sketch $\xi_{\{x\}}$ and charge density.
 - Explain the operating principle of JFET (b) using suitable sketches.
- 7. (a) For an n-channel MOSFET with a gate oxide thickness of 10 nm, $V_T = 0.6$ V and $Z = 25 \mu m$, $L = 1 \mu m$, calculate the drain current at $V_G = 5V$ and $V_D = 0.1 V$. Also calculate the drain current for $V_D = 7V$. Assume an electron channel mobility of $\mu_n = 200 \text{ cm}^2/\text{V.s.}$
 - (b) Draw energy band diagram of pnn $\mathcal{A}_{\mathcal{C}}$ transistor in unbiased condition.
- AK15-1900/93

(Turn Over)

AK15-1900/93

Code : 041308

(c) Draw energy band diagram of pnp transistor in common base mode. Discuss why the base of a transistor is thin and lightly doped. 4

(4)

- Write short notes on any two of the 8. (a) following : 4×2=8
 - (i) Solar cell
 - (ii) LED
 - (iii) Laser diode
- What is silicon controlled rectifier and (b)unijunction rectifier? 3×2=6
- 9. (a) Write a short note on charge coupled devices (CCD). 4
 - (b) What is Schottky barrier diode? 4
 - (c) Define triodes, tetrads and pentodes. 6

6

8

 $\overline{7}$

7

6

4

(2)

Code : 041308

				-	<i>(g)</i> W	hat is Zener breakdown?		
B.T	B.Tech 3rd Semester Exam., 2017				(h) W	hat is varactor diode?	* *	
SOLI	D STATE PHYSICS AND DEVICES	AKI	AKU	~		/hat are the different configur JT?	ations of	AKU
Time : 3	hours Full Marks : 70	AKUbihar.com	AKUbihar.com		<i>(i)</i> W	Vrite two usages of CCD.	· • · · · · · · · · · · · · · · · · · ·	AKUbihar.com
(ii) Ther (iii) Atter (iv) Ques	marks are indicated in the right-hand margin. e are NINE questions in this paper. npt FIVE questions in all. stion No. 1 is compulsory.	r.com	r.com	- 2.	(a) U (b) L	short notes on the following UT ED Thotodiode	: 5+5+4=14	r.com
1. Ans	bols used (if any) have their usual meaning. swer any seven questions : 2×7=14 What is thermionic emission?		â	- 3.		ss CVD, sputtering and ev ds in detail.	aporation 5+5+4=14	
(a) _(b) _(c) (d)	How is epitaxial growth achieved? What do you mean by diffusion? What happens to the states below and above Fermi-level at absolute zero	AKUbihar.com	AKUbihar.com	4.	valenc electro	do you mean by conduc e band? Derive express onic concentration in the c and hole concentration in		AKUbihar.com
~(e)	temperature ($T = 0$ K)? Write down any two methods used for the thin film deposition.	om	om	5.	diode voltag	is an ideal diode model? De equation. Plot ideal diode te characteristics. Why do yo tion from ideal diode in a re	current- ou observe al diode?	m
〜(f) 8AK/ 31	What is drift current? (Turn Over)			8AK	/31		2+8+2+2=14 (Continued)	
AKUbihar.o	* • •	ι.	I	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	oihar.co	m	AKUbihar.com	

AKUbihar.com

AKUbihar.com

AKUbihar.com

25 | Page

8. What are the different operation modes of BJT? Derive an expression for common emitter current gain in BJT. 2+12=14

7. Write short notes on the following :

V

Schottky diode

Tunnel diode

X 9. Describe operating principle of MOSFET. Discuss I-V characteristics of MOSFET. 6+8=14

8AK-1020/31

Code: 041308

AKUbihar.com

AKUbihar.com

AKUbihar.com

(a)

(b)

strongly

AKUbihar.com

AKUbihar.com

p-type

3+3+8=14

5+5+4=14

LIST OF THE EXPERIMENT

- 1. To determine the energy gap of PN junction.
- 2. To study of I-V characteristic of SCR.
- 3. To study of I-V characteristic of UJT.
- 4. To study of I-V characteristic of triac.
- 5. To study of I-V characteristic of photodiode.
- 6. To study of I-V characteristic of LED.
- 7. To study of I-V characteristic of tunnel diode.
- 8. To study of I-V characteristic of varactor diode.
- 9. To study of I-V characteristic of zener diode.
- 10. To study of transfer function and output characteristic of MOSFET.