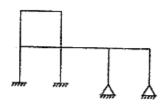
Code : 011511

B.Tech. 5th Semester Exam., 2013

STRUCTURAL ANALYSIS-I

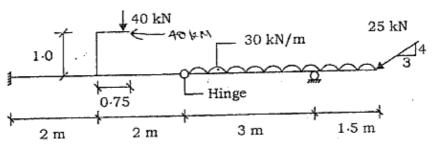

Time: 3 hours akubihar.com Full Marks: 70

Instructions:

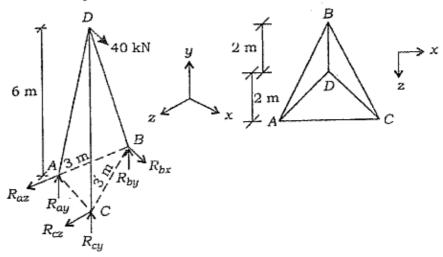
- (i) All questions carry equal marks.
- (ii) There are NINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Answer/Choose the correct one (any seven) :
 - The degree of statical indeterminacy of a propped cantilever is
 - (i) zero
 - ~(ii) 1
 - (iii) 2
 - (iv) 3

14AK-750/199

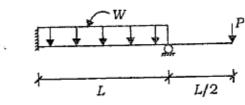
Find the degree of statical indeterminacy of the following structure:


- A pin-jointed truss cannot deflect unless
 - (i) there is load on it
 - (ii) the members are stressed
 - (iii) there is change in lengths of members
 - (iv) the material is elastic
- Due to settlement of support in a fixed beam midspan bending moment
 - (i) increases
 - (ii) decreases
 - (iii) remains unchanged
- If the supports of a three-hinged arch yield horizontally by a small amount, the horizontal support reaction
 - (i) decreases
 - (ii) increases
 - (iii) remains the same
- At the location of an intermediate simple support of a continuous beam, corresponding conjugate beam will be
 - (i) a simple support
 - (ii) a fixed support
 - (iii) at free-end
 - (iv) internal hinge

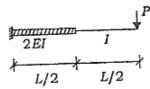
akubihar.com


akubihar.com

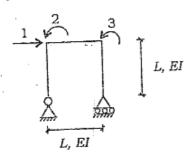
- g) A point load of 50 kN acting centrally on a simply supported beam produces the same maximum deflection in the beam as caused by a UDL of 20 kN/m over the whole span. The span of the beam is
 - (i) 10 m
 - (ii) 8 m
 - (iii) 6 m
 - (jv) 4 m
- (h) If fixity of support increases in a simply supported beam, central deflection
 - (i) increases
 - (ii) decreases
 - (iii) does not change
- (i) Castigliano's theorem is applicable
 - (i) when the system behaves elastically
 - (ii) only when principle of superposition is valid
 - (iii) None of the above
- (j) The three-moment equation written for an intermediate support of a continuous beam expresses the condition of
 - (i) slope compatibility at that point
 - (ii) moment equilibrium at that point
 - (iii) zero deflection at the support point
 - (iv) structural stability


2. Determine the reaction components of the two supports as shown below:

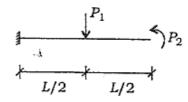
3. Analyze the space truss as shown below :.



4. Determine the deflection under load point for the beam shown below. El is constant:



(6)


- 5. Write the theorem of three moments considering support settlement, explaining meaning of notations used.
- Using energy equations, find the deflection under the load point of the beam.

- Two wheel loads, 160 kN and 90 kN, spaced 4 m apart, are moving over a simply supported beam of 12 m span. Determine the maximum shear force and moment that may be developed any where on the beam.
- 8. Generate flexibility matrix for coordinates 1, 2 and 3 of the frame.

9. Considering only bending deformation, determine the flexibility matrix f and stiffness matrix k of the section shown below. EI is constant:

* * *