MUZAFFARPUR INSTITUTE OF TECHNOLOGY

B.Tech 6th Semester Mid-Sem Exam., 2019

DIGITAL IMAGE PROCESSING (ECE)

TIME: 2 Hrs

FULL MARKS: 20

Ques. (1): Explain the following term (any three)

(2 x 3 = 6 marks)

(a) Formula of Fourier Transform in two-dimensional space.

$$F(u,v) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(ux/M + vy/N)}$$

for
$$u = 0, 1, 2, ..., M - 1, v = 0, 1, 2, ..., N - 1$$

(b) Image Negatives

s = L - 1 - r

(c) Transfer Function of Butterworth High Pass filter

$$|H(u,v)|^{2} = \frac{1}{1 + \left[\frac{D_{0}}{D(u,v)}\right]^{2n}}$$

(d) Smoothing Linear filters

The general implementation for filtering an $M \times N$ image with a weighted averaging filter of size $m \times n$ is given

$$g(x, y) = \frac{\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x + s, y + t)}{\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t)}$$

where $m = 2a + 1$, $n = 2b + 1$.

(e) Laplacian in frequency domain

$$\Im\left[\frac{\partial^2 f(x,y)}{\partial x^2} + \frac{\partial^2 f(x,y)}{\partial y^2}\right] = -(u^2 + v^2)F(u,v)$$

$$H_1(u,v) = -(u^2 + v^2)$$
Exercise

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \stackrel{\text{Spatial}}{\longrightarrow} \text{Laplacian operator}$$

Ques.(2): Draw the block diagram of homomorphic filtering approach for image enhancement and explain it.

$$H(u,v) = (\gamma_H - \gamma_L) \left[1 - e^{-c \left(\frac{D^2(u,v)}{D_0^2} \right)} \right] + \gamma_L$$

Discuss high boost filtering for sharpening and Butterworth low pass filter for smoothing.

(5 marks)

Let $\overline{f}(x, y)$ denote the blurred image, unsharp masking is $g_{mask}(x, y) = f(x, y) - \overline{f}(x, y)$

Then add a weighted portion of the mask back to the original

$$g(x, y) = f(x, y) + k * g_{mask}(x, y) \qquad k \ge 0$$

when k > 1, the process is referred to as highboost filtering.

(OR)

(5 marks)

Histogram Equalization

The intensity levels in an image may be viewed as random variables in the interval [0, L-1]. Let $p_r(r)$ and $p_s(s)$ denote the probability density function (PDF) of random variables r and s. $p_r(r)$ $p_s(s)$

a

FIGURE 3.18 (a) An arbitrary PDF. (b) Result of applying the transformation in Eq. (3.3-4) to all intensity levels, *r*. The resulting intensities, *s*, have a uniform PDF, independently of the form of the PDF of the *r*'s.

Histogram Equalization

 $s = T(r) \qquad 0 \le r \le L - 1$

a. T(r) is a strictly monotonically increasing function in the interval $0 \le r \le L - 1$;

25

26

Histogram Equalization

$$s = T(r) = (L-1) \int_{0}^{r} p_{r}(w) dw$$

$$\frac{ds}{dr} = \frac{dT(r)}{dr} = (L-1) \frac{d}{dr} \left[\int_{0}^{r} p_{r}(w) dw \right]$$

$$= (L-1) p_{r}(r)$$

$$p_{s}(s) = \frac{p_{r}(r)dr}{ds} = \frac{p_{r}(r)}{ds} = \frac{p_{r}(r$$

5/25/2019

Histogram Equalization

Continuous case:

$$s = T(r) = (L-1) \int_0^r p_r(w) dw$$

Discrete values:

$$s_{k} = T(r_{k}) = (L-1)\sum_{j=0}^{k} p_{r}(r_{j})$$
$$= (L-1)\sum_{j=0}^{k} \frac{n_{j}}{MN} = \frac{L-1}{MN}\sum_{j=0}^{k} n_{j} \qquad k=0,1,..., L-1$$

5/25/2019

Ques.(4): Explain image sharpening using Laplace Operator in both spatial and frequency domain

(4 Marks)

27

Sharpening Spatial Filters: Laplace Operator

The second-order isotropic derivative operator is the Laplacian for a function (image) f(x,y)

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$
$$\frac{\partial^2 f}{\partial x^2} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$
$$\frac{\partial^2 f}{\partial y^2} = f(x,y+1) + f(x,y-1) - 2f(x,y)$$
$$\nabla^2 f = f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1)$$
$$-4f(x,y)$$

5/25/2019

0	1	0	1	1	1	a b c d
1	-4	1	1	-8	1	(a) Filter mask used to implement Eq. (3.6-6)
0	1	0	1	1	1	(b) Mask used to implement an extension of this
0	-1	0	-1	-1	-1	equation that includes the diagonal terms.
-1	4	-1	-1	8	-1	(c) and (d) Two other implementa- tions of the
0	-1	0	-1	-1	-1	Laplacian found frequently in practice.

Sharpening Spatial Filters: Laplace Operator

5/25/2019

Sharpening Spatial Filters: Laplace Operator

Image sharpening in the way of using the Laplacian:

$$g(x, y) = f(x, y) + c \Big[\nabla^2 f(x, y) \Big]$$

where,

f(x, y) is input image,

g(x, y) is sharpenend images,

c = -1 if $\nabla^2 f(x, y)$ corresponding to Fig. 3.37(a) or (b) and c = 1 if either of the other two filters is used.

5/25/2019

69

68

Laplacian in Frequency Domain

(OR)

Consider the image segment shown

(a) Let $V = \{0, 1\}$ and compute the lengths of the shortest 4-, 8-, and m-path between p and q. If a particular path does not exist between these two points, explain why.

(b) Repeat for V = {1, 2}.

3	1	2	1 (q)
2	2	0	2
1	2	1	1
1 (p)	0	1	2