Experiment No.- 3

Objective of the Experiment: To Study the 1-Phase Full Wave Rectifier with R, Motor and Free Wheeling Diode.

Equipment Needed:

- 1. Scientech 2700 Trainer Kit.
- 2. Resistor and Motor Load.
- 3. Patch Cords.
- 4. DSO.

Circuit Diagram:

Fig. 1: 1-phase full wave rectifier with R and Motor Load.

Fig. 2: 1-phase full wave rectifier with motor load and freewheeling diode.

Note: Gate pulse will be given by firing circuit unit internally.

Procedure:

- 1. Make the connections as per the given circuit diagram.
- 2. Give the gate pulses from the firing circuit unit to the SCR assembly carefully.
- 3. Connect the given resistor then motor load and then motor load with freewheeling diode.
- 4. Connect the DSO probe and multi-meter across the load.
- 5. Make sure the connections are **OK** and patch cords are **not loose**.
- 6. Switch on the main supply.
- 7. Vary the firing angle and take the required readings from the DSO and multi-meter.
- 8. Calculate the desired result from the observed data.

Expected Output Voltage Waveforms:

Observation Table:

$V_{\text{peak}}(V_m) = V$						
Sl No.	Firing Angle (α^0)	Extinction Angle (β^0)	Conduction Angle (γ^0)	Average Output Voltage (V ₀) (Volt)		% Error
	1 -	10.0	- 25	V ₀ (Meas.)	V ₀ (Cal.)	
1.	20	200	1			531
2.	10.22	528	227	8.2	2	10
3.		L.F.	EACH	1990	1	1.0
4.	100	1	COVH	1111	323	
5.	- A -		1.20	Sellin-	1.12	

Calculations:

For Resistive (Discontinuous) & Motor with FWD (Continuous Conduction Mode):

$$\mathbf{V}_{0}=\frac{V_{m}}{\pi}(\mathbf{1}+\boldsymbol{COS\alpha})$$

For Motor (Continuous Conduction Mode):

200

$$V_{0}=\frac{2V_{m}}{\pi}COS\alpha$$

For Motor & Motor with FWD (Discontinuous Mode):

Io=
$$\frac{V_m}{\pi} (COS\alpha - COS\beta) - \frac{E(\pi + \alpha - \beta)}{\pi}$$
)
Vo= IoR +E