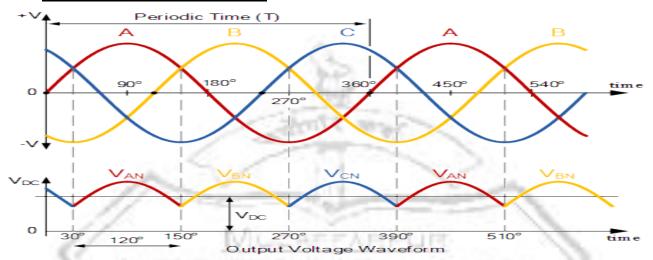

Experiment No.- 5

Objective of the Experiment: To Study the 3-Phase Half Wave Rectifier with R and Motor load.

Equipment Needed:

- 1. Scientech 2700 Trainer Kit.
- 2. Resistor and Motor Load.
- 3. Patch Cords.
- 4. DSO.

Circuit Diagram:


Note: Gate pulse will be given by firing circuit unit internally.

Procedure:

- 1. Make the connections as per the given circuit diagram.
- 2. Give the gate pulses from the firing circuit unit to the SCR assembly carefully.
- 3. Connect the given resistor and then motor load.
- 4. Connect the DSO probe and multi-meter across the load.
- 5. Make sure the connections are **OK** and patch cords are **not loose**.
- 6. Switch on the main supply.
- 7. Vary the firing angle and take the required readings from the DSO and multi-meter.
- 8. Calculate the desired result from the observed data.

1 Prepared by: A.K. Singh

Desired Output Voltage Waveform:

Observation Table:

	The state of	V_{peak}	$\kappa_{\rm c,phase}(V_{mp})$	= V		11
Sl No.	Firing Angle (α^0)	Extinction Angle (β^0)	Conduction Angle (γ^0)	Average Output Voltage (V		% Error
	1500		- 10	V _O (Meas.)	V _O (Cal.)	4.1
1.	1 11	3.6	- 23	93		7
2.	1	2000		16-6-	4000	VV.
3.	/DACE	Section		30	2-3	111
4.	111	Just .	TEAST	PHILE.	- 11	1.00
5.	-4:5	3	COVE	10.17	8773	

Calculations:

For Resistive Load:

• Calculation for average output voltage (for $\alpha \le 30^{\circ}$)

$$V_0 = \frac{3\sqrt{3}}{2\pi} V_{mp} COS\alpha$$

• Calculation for average output voltage (for $\alpha > 30^{\circ}$)

$$V_0 = \frac{3}{2\pi} V_{mp} (1 + COS(30 + \alpha))$$

For Motor Load

• Calculation for average output voltage

$$\mathbf{V}_{0} = \frac{3\sqrt{3}}{2\pi} V_{mp} COS\alpha$$
