Experiment No.- 7

Objective of the Experiment: To study the three phase inverter (180°) mode with star-connected resistive load.

Equipment Needed:

- 1. Scientech 2700 Trainer Kit.
- 2. Firing Circuit unit.
- 3. Resistive Load.
- 4. Patch Cords.
- 5. DSO.

Circuit Diagram:

Note: Gate pulse will be given by firing circuit unit externally.

Procedure:

- 1. Make the connections as per the given circuit diagram.
- 2. Give the gate pulses from the firing circuit unit to the IGBT assembly carefully.
- 3. Connect the given resistive load in star configuration.
- 4. Connect the DSO probe and multi-meter to **one phase and neutral for phase voltage** and between two **phases for line voltage** across the load.
- 5. Make sure the connection is **OK** and patch cords are **not loose**.
- 6. Switch on the main supply (DC).
- 7. Switch on the firing circuit unit and DSO.
- 8. Take the required readings from the DSO and multi-meter.
- 9. Switch off the firing circuit unit and main supply after completing the experiment.
- 10. Calculate the desired result from the observed data.

Expected Output Waveforms:

1. Line Voltage

Observation Table:

Sl No.	Frequency (Hz)	Line Voltage (V _L) Pulse Width = sec.				Phase Voltage (V _{Ph})			
	Meas.	Peak	rms cal.	rms meas.	%error	Peak	rms cal.	rms meas.	%error
1.	U.S.	4.2	1.0	KOA.	164		10	1.1	

Calculation:

1. For Line Voltage (rms):

$$\mathbf{V}_L = \sqrt{\frac{2}{3}} \ \mathbf{V}_S$$

2. For Phase Voltage (rms):

$$\mathbf{V}_{Ph} = \frac{\sqrt{2} \, V_S}{3}$$